WL-TR-97-1194

AUTOMATED DESIGN OF BOARD AND MCM
LEVEL DIGITAL SYSTEMS

DR. RANGA VERMURI

DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

UNIVERSITY OF CINCINNATI

CINCINNATI OH 45221-0030

OCTOBER 1997

s 1000500 O

ethodolog

RASSP

Reinventing

Electronic
Design

Architecture Infrastructure

DARPA « Tri-Services

DTIC QUALITY INSPECTED @
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

AVIONICS DIRECTORATE 7~
WRIGHT LABORATORY y:
AIR FORCE MATERIEL COMMAND

WRIGHT-PATTERSON AFB, OH 45433-7623

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than
in connection with a definitely Government-related procurement, the United States Government
incurs no responsibility nor any obligation whatsoever. The fact that the Government may have
formulated or in anyway supplied the said drawings, specifications, or other data, is not to be
regarded by implication, or otherwise in any manner construed, as licensing the holder, or any
other person or corporation; or as conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL
INFORMATION SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE
GENERAL PUBLIC, INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

KERRY HW.L, Project Enginder J%I%ES S. WI;LLIAMSON, Chief

Embedded Information Systems Embedded Information Systems
Engineering Branch Engineering Branch
AFRL/IFTA AFRL/IFTA

\’I(i aaa(z«; (e o—""
STANLEY E.[WAGNER, Chief
Wright Site Coordinator
Information Directorate
AFRL/IFW

IF YOUR ADDRESS HAS CHANGED, IF YOU WISH TO BE REMOVED FROM OUR
MAILING LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR
ORGANIZATION, PLEASE NOTIFY AFRL/IFTA, WRIGHT-PATTERSON AFB OH 45433-
7334 TO HELP US MAINTAIN A CURRENT MAILING LIST.

COPIES OF THIS REPORT SHOULD NOT BE RETURNED UNLESS RETURN IS
REQUIRED BY SECURITY CONSIDERATIONS, CONTRACTUAL OBLIGATIONS, OR
NOTICE ON A SPECIFIC DOCUMENT.

REPORT DOCUMENTATION PAGE oM e

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Qffice of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Blank) 10/15/97 Final 8/05/93-9/15/97
4. TITLE AND SUBTITLE) 5. FUNDING NUMBERS
Automatic Design of Board and MCM Level Digital Systems C: F33615-93-C-1316
PE 63739E
PR A268
6. AUTHORS TA 02
Dr. Ranga Vermuri
WU 07
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
University of Cincinnati NUMBER
Department of Electrical & Computer Engineering and Computer Sciences
P.O. Box 210030
Cincinnati, OH 45221-0030
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING AGENCY
Avionics Directorate REPORT NUMBER
Wright Laboratory WL-TR-97-
Air Force Materiel Command TR-97-1194
Wright-Patterson AFB, OH 45433-7623
|__POC: Kerry L. Hill, AFRL/ IFTA, 937-255-7698 x3604
11. SUPPLEMENTARY NOTES
12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release: Distribution is Unlimited

13. ABSTRACT (Maximum 200 words)

This is a Rapid Prototyping of Application Specific Signal Processors (RASSP) program funded by DARPA. The goal of this program is to develop
languages, techniques, and tools for hardware, software cosynthesis of board- and MCM-level Digital Signal Processing (DSP) systems from very high
level requirements specifications. A second goal is to develop a usage guide for the Level 2 Waveform and Vector Excharige Specification (WAVES)
language. The program includes the development of, (1) VSPEC, a declarative interface requirements specification language for VHDL entities, (2)
hardware/software cosynthesis techniques for embedded DSP systems, (3) hierarchical multi-technology hardware partitioning tools, (4) software
compilation techniques to compile behavioral VHDL into C, (5) a WAVES Level 2 usage guide and (6) exploring WAVES usage in conjunction with
BSDL and for hierarchical testing. '

T GTED 3
14. SUBJECT TERMS 15. NUMBER OF PAGES
VHDL, Design, Board-Level, MCM-Level, Specification Language 306

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

Unclassified Unclassified Unclassified SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Table of Contents

L Project GOalsiuniniiiiiit it e e e e e

2 AccompliShmentsouuriiiiii e e

Attachmentsooiiiiiiiiiiii e inanns e

Appendix A: Board and MCM Level Synthesis for Embedded Systems:

The COMET Cosynthesis Environmentcovuiiiiininiiinnieiniannnnnn.

Appendix B: VSPEC: A Declarative Requirements Specification Language for VHDL
Appendix C: Pipelined Scheduling of Hardware-Software Codesigns

Appendix D: RECOD: A Retiming Heuristic to Optimize Resource and
Memory Utilization in HW/SW Codesignscoovvvinvnnn.... e

Appendix E: Hardware/Software CoSynthesis: Multiple Constraint Satisfaction
and Component Retrievaloooiiiiiii i e e

Appendix F: A Retiming Based Relaxation Heuristic for Resource-Constrained

Loop Pipeliningocniiniiiiitit i i e e

Appendix G: Multicomponent Partitioning for VLSI System Synthesis
Apbendix H: Performance Modeling and Tradeoff Analysis During Rapid Prototyping
Appendix I: Performance Verification Using Partial Evaluation and Interval Analysis
Appendix J: Hierarchical Behavior Partitioning for Multicomponent Synthesis

Appendix K: Resource Constrained RTL Partitioning for Synthesis of
Multi-FPGA DeSIZOS ... uutiiee ittt ettt

Appendix L: Using Declarative Specifications and Case-Based Planning for
System Synthesiscouiriiiiiiiiiii i

Appendix M: Extending VHDL to the Systems Leveloovviirueerunennennnn...

Appendix N: Representing Abstract Architectures with Axiomatic Specifications
and Activation Conditionsoiiiiiii i

Appendix O: Formal Representations for Abstract System Evaluation

Appendix P: Abstract Architecture Representation Using VSPECcooeveneennnn...
Appendix Q: VSPEC: A Declarative Specification Methodology for System Synthesis
Appendix R: VSPEC: A Declarative Specification Methodology for System Requirements ..

Appendix S: Application of Software Synthesis Techniques to Composite Systems

1 Project Goals:

The Cosynthesis at Board and MCM Levels for Digital Signal Processors (COMET) Project is a
RASSP Technology Base Program at the University of Cincinnati. RASSP (Rapid Prototyping
of Application Specific Signal Processors) is an Advanced Research Projects Agency, Electronic
Systems Technology Office (ARPA/ESTO) program. The COMET project is monitored by the US
Air Force Wright Laboratory under contract number F33615-93-C-1316.

The goal of the COMET project is to develop languages, techniques and tools for hardware, soft-
ware cosynthesis of board- and MCM-level Digital Signal Processing (DSP) systems from very high
level requirements specifications. A second goal is to develop a usage guide for the Level 2 Wave-
form and Vector Exchange Specification (WAVES) language. The COMET project includes the
development of, (1) VSPEC, a declarative interface requirements specification language for VHDL
entities, (2) hardware/software cosynthesis techniques for embedded DSP systems, (3) hierarchi-
cal multi-technology hardware partitioning tools, (4) software compilation techniques to compile
behavioral VHDL into C, (5) a WAVES Level 2 usage guide and (6) exploring WAVES usage in
conjunction with BSDL and for hierarchical testing.

COMET project statement of work is as follows:

—

. Extend VHDL to create VSPEC Specification Language (Requirement 3.2)

)

- Develop technology driven VSPEC partitioner (Requirement 3.3)
3. Develop VSPEC-Embedded software Translator (Requirement 3.4)
4. Integration and distribution (Requirement 3.5)

5. WAVES usage guide for electronic module design development (Requirement 3.6)

2 Accomplishments
The accomplishments of the COMET project are summarized as follows:

1. VSPEC Development (CDRL A007)

VSPEC as developed under this effort is a Larch interface language for VHDL. VSPEC
provides a declarative specification mechanism for defining: (i) axiomatic requirements, (ii)
activation conditions (iii) internal state, (iv) constraints, and (v) abstract architectures for
systems. VSPEC is fully compatible with VHDL and provides requirement definitions for the
interfaces of entities, functions and procedures.

With the language definition complete a formal semantics for VSPEC was defined using the
Larch Shared Language (LSL). This formal semantics is used to precisely define what VSPEC
means and for verification. The VSPEC parser is being extended currently to generate LSL
directly for use in verification tools.

2. VSPEC Partitioner (CDRL A008)

Several partitioning approaches were developed under this project. Notable of these were the
REBOUND tool and the genetic partitioner for codesigns.

The REBOUND tool generates structural architectures. Accordingly, in the current version
of the hardware/software partitioning tool, concurrent statements are limited to components.
The approach is, however, extensible to other concurrent statements such as processes and
blocks as well.

The genetic partitioner contemplates hardware software codesigns based on a relaxation-
based retiming strategy. The partitioner explores a large number of hardware alternatives
and bardware/software bindings. To aid this process, a detailed performance estimator for
pipelined and nonpipelined codesigns has been developed.

3. VSPEC-Embedded Software Translator

Two tools for software synthesis were developed as a part of this effort. The first was a
stand-alone parser developed around an ad hoc VHDL front end. This system generated
code for the Texas Instruments TMS320 series DSP processor. Example systems included:
(i) a compander system, (ii) an FFT subsystem, (iii) an IFFT subsystem, and (iv) an IIR
filter. Each example was coded in VHDL-S, synthesized into C and evaluated on a TMS320
prototyping system.

- The examples synthesized generated the capability to generate C for the VHDL-S subset.
Further, the initial example set demonstrated the ability to generate: (i) a generic operating
system kernel, and (ii) interface routines to support executing the C code. VHDL is inherently
parallel in nature while C is inherently sequential. Each VHDL-S process is transformed into
a C process by the translator. These processes are managed by the simple operating system
using message passing for interprocess communication. C routines are also generated to
manage interfaces between software and associated hardware devices. This is primarily used
for I/O associated with the DSP processor.

The second software translation system took the initial results from the stand alone parser
and incorporated them into the SAVANT environment. The SAVANT environment provides
a much richer and more stable platform for building the translator. The object model was

2

extended to include C publishing routines and additional enhancements were added. The
most significant addition was the ability to generate generic C from VHDL-S. The generic C
code is standard C with TMS320-specific additions. The this code was tested on both Solaris
and Linux platforms. :

The final translator delivered here can generate code for either the TMS320 or a generic C
system. It is based on the SAVANT toolset, but has not been ported to the most current
SAVANT release.

. Integration and Distribution

All VSPEC software has been integrated and transferred to VHDI, community by publica-
tions, presentations and repository access. The software can be accessed by anonymous File
Transfer Protocol (FTP) by contacting the PI of this project. Several publications resulting
from this project are appended in this report. '

. WAVES Usage Guides (CDRL A009)

A WAVES Level-2 usage guide has been developed. In addition, two detailed case studies
illustrating the use of WAVES Level-2 have been developed. A document describing the use
of WAVES for testing boundary scan devices has been developed. A final document has been
written describing the use of WAVES in conjunction with BSDL.

APPENDIX A :

Abstract

COMET is a cosynthesis environment for application-
specific electronic signal processing modules. COMET is
capable of automatically synthesizing multicomponent
kardware-software systems at the board- and MCM- lev-
els. In the COMET environment, system-level specifi-
cations are written in VSPEC, a declarative annotation
language for VHDL entities. COMET contains various
VHDL-centered tools for hardware-software partition-
ing, MCM_ synthesis, ASIC synthesis, software compi-
lation and performance analysis, and various WAVES-
centered tools for board, MCM- and ASIC level lesting.

1 Overview

COMET (Cosynthesis at Board and MCM Levels
for Digital Signal Processors) is a hardware-software
cosynthesis environment for embedded signal process-
ing modules. COMET users can synthesize single board
application-specific Dsp (digital signal processing) ar-
chitectures. These target architectures, illustrated
in Figure 1, can contain application-specific AsicCs,
FPGAS, MCMs, and off-the-shelf hardware components
along with an off-the-shelf processor which executes
applications-specific software as well as other kernel
functions.

The users’ view of COMET is shown in Figure 2. In a
typical top-down design process, COMET users begin
by writing a specification of the system’s functional
requirements and constraints in VSPEC. Then, using

*The research reported in this paper is being conducted at
the University of Cincinnati and is supported in part by by the
ARPA RASSP program monitored by the Wright Lab, US Air
Force under contract no. F33613-93-C-1316 and by the Solid
State Electronics Directorate of the Wright Laboratory of the
US Air Force under contract number F33615-91-C-1811.

Board and MCM Level Synthesis for Embedded Systems:
The COMET Cosynthesis Environment *

Ranga Vemuri, Hal Carter and Perry Alexander
Department of Electrical and Computer Engineering
University of Cincinnati, ML. 30
Cincinnati, Ohio 45221-0030
Ph: 513-556-4784; Email: ranga.vemuri@uc.edu

the hardware-software partitioning tool, a top-level
hardware-software architecture is generated. The par-
titioning tool uses a library of reusable components.
Each component is a DsP algorithm bound or to be
bound to hardware or software. The component li-
brary also contains a set of off-the-shelf processors.
The output of the partitioning tool is an architecture
of hardware and software components whose behav-
ior is specified in procedural vEDL. In addition, the
software components are bound to an off-the-shelf pro-
cessor and the hardware components are bound to var-
ious AsIC and packaging technologies. Hardware com-
ponents in the design are submitted to hardware syn-
thesis tools and the software components to software
synthesis tools. An interface synthesis tool is used
to synthesize all the interface logic to support inter-
component hardware-software communication proto-

- cols. An architecture integration tool composes the

various components into a coherent board-level design
that can be processed by commercial board-level place
and route tools.

COMET environment also contains test generation
tools based on WAVES and performance analysis tools.
COMET tools are also interfaced to various commercial
and university tools, especially from the RASSP com-
munity, to facilitate simulation, logic synthesis, syn-
thesis of board-level glue logic and Asic, McM and
board-level layout synthesis.

2 VSPEC Specification Language

VSPEC is a declarative annotation language for VHDL
entities. Through vsSPEC designers specify require-
ments the system design should meet and constraints
on its implementation. A VSPEC specification consists
of a collection of logical statements and declarations

\ v

AR
SR

s

Specificati gpgedﬂ;:c
on Target on
and Constraints ?..m,, for Software
for Hardware Arc
/
interface
Hardware | Loglc scg'm“'f."
Synthesis Synthesis r
Embedded
Hardware
Design Software
Integration
Stmulation
and
Verification

Figure 2: COMET Cosynthesis Environment

that annotate a VHDL entity construct. Consider the
following entity specification of a multiplexor:

entity mux is
port (d0, d1, cntrl : in bit;
output : out bit);
end mux; ‘

In this example, the entity names the device and de-
fines input and output ports. However, there is no
indication of how the multiplexor functions or what
performance constraints it must adhere to. A VHDL
architecture describes the behavior or structure of
an entity. Behavior can be described through com-
municating and concurrently executing sequential pro-
cesses. Structure can be described through component
instantiation and interconnection. VHDL allows the
user to specify the behavior of a system by defining
a single artifact (architecture) embodying that be-
havior. Although alternative behaviors may be spec-
ified by multiple architectures of the same entity,
these architectures must be explicitly enumerated.
Therefore, implementational biases occur while for-
mulating the functional requirements since the user
is forced to commit to one or more designs.

The vsPEC language was developed to support the
definition of requirements prior to the specification
of designs. VSPEC has conmstructs to allow its users
to declaratively specify input pre-conditions, output
post-conditions, state variables, constraints, and other
requirements at the entity level. The following is a
VSPEC definition of a simple multiplexor:

entity mux is
port (40, d1, entrl : in bit;
output : out bit);
ensures
output = ({d0 and cmtrl) or
(d1 and not cntrl));
constrained by
power < 4 and
size < 20
end mux;

This VSPEC entity describes the interface to the com-
ponent as well as the desired function and constraints.
The ensures clause declaratively states the function
of the multiplexor. This definition allows many differ-
ent implementations to be developed for this specifica-
tion as long as the specification meets the requirement
stated here. The constrained by clause specifies con-
straints placed on the power and area of the entity.

(92}

The vsPEC interface language affects only the VHEDL
entity declaration. Six VSPEC clauses are allowed in
the entity: '

e assumes logical_ezpression;

Describes the pre-conditions that must be met
before this entity can be used. The logi-
cal_ezpression is defined over the set of inputs of
the device.

o ensures logical_ezpression;

Describes post-conditions that must be true
when the entity functions correctly. The logi-
cal_ezpression is defined as a relation between the
inputs of the device and its outputs.

e constrained by logical_ezpression;

Describes the constraints placed upon the entity.
These constraints include size, timing, heat dissi-
pation, power consumption and clock speed. The
logical_ezpression is defined over pre-defined vari-
ables representing potential constraints.

e state typed_identifier_list;

" A list of typed variables used to store the state of
the entity. These variables maintain their values
from one entity invocation to the next.

e modifies identifier.list ;

List of variables and signals this entity can mod-
ify. All elements listed must be defined in the
state clause or in the entity’s port declaration
and of type out, inout, or buffer.

e VHDL type based on logical ezpression;

Associates a user defined VHDL type with a for-
mal, logical definition. This allows inferences in-
volving user defined types.

Architectures in VSPEC A general architecture
is a collection of interconnected high level specifi-
cations that serves as a template for system defi-
nition. The general requirements of each compo-
nent are known, the interaction between them is
known, but the specifics of the implementation may
not be known. The VHDL architecture construct
supports specification of interconnections among en-
tities. Whether the entity structures referenced by
the architecture have associated architectures deter-
mines whether there are just requirements or designs
associated with each entity.

Figure 3 shows a specification of a batch sequential
sort and search system. The entity structures associ-
ated with each component in batch-seq are specified
using VSPEC with no specific associated algorithm.
The sort component must produce a sorted output and
the search component must find a key given a sorted
input. Algorithms for each, perhaps in the form of
behavioral architectures, must be specified at a later
time.

VSPEC Support Environment All VSPEC ex-
pressions translate into REFINE declarations. These
declarations support a formal inference process, exe-
cutable specifications and REFINE based software syn-
thesis tools. REFINE is a language that allows pro-
grammers to write code in a wide range of styles. This
includes high level constructs such as sets and trans-
formation rules down to more traditional procedural
language constructs such as loops and if-then state-
ments [1]. REFINE specifications are executable. This
allows designers to test their system at a very early

point in the design process.

3 System Performance Estimation

Accurate performance estimation is critical to the suc-
cess of a design synthesis system. The COMET perfor-
mance estimator is used to evaluate the performance,
in terms of area, speed, throughput rate, and power
dissipation, of the library components as well as the
performance of a contemplated hardware-software ar-
chitecture of a system. The estimator can be used
interactively or through the partitioning engine to fil-
ter inferior architectures and to select a constraint-
satisfying hardware-software binding for a given spec-
ification. As shown in Figure 4, various hardware-
software alternatives can be selected for each compo-
nent in the architecture and for each selected configu-
rations performance envelopes can be generated.

Hardware Performance Estimation: Perfor-
mance estimation for hardware components is done
by detailed analysis of the operational behavior of
the component. A data-flow control-flow graph (DFG)
is extracted from the behavioral specification. The
DFG is scheduled across control-steps using register
level hardware modules selected from a module li-
brary. From this scheduled and operator-bound brg
accurate estimates of area, clock-speed and through-
put rate are made. Estimation of power consumption

entity example is
port (list: in array of element;
k: in integer;
output: out element);
modifies output;
ensures
(fa e:element)
(output = e) <=>
(e in input and
k = key(e));
end example;

architecture batch-seq of example is
component sorter is
sort
port (inlist: in array of element;
outlist: out array of element);
component searcher is
bin_search
port (inlist: in array of element;
value: in integer;
return: out element);
begin
bl: sorter
port map (list,tmp);
b2: searcher
port map (tmp,k,output);
end batch-segq;

entity sort is
port (input: in array of element;
output: out array of element);
modifies output;

ensures
bag(output) = bag(input) and
ordered(output) ; '

end sort;

entity bin_search is
port (input: in array of element;
k: in integer;
output: out element);
modifies output;
assumes
ordered(input);
ensures
(fa e:element)
(output = e) <=>
(e in input and
k = key(e));
end bin_search;

Figure 3: Batch sequential architecture for finding a
value in a list.

_Figure 4: Performance Estimation

is based on the generation of profile data for typical
stimuli of the component. The profile data is used
to generate estimates of switching activity in the final
design. Data from a technology library that contains
both Asic fabrication and packaging technology pro-
files is used to generate concrete technology-dependent
estimates from the abstract estimates. Some of the
hardware performance estimation work has been done
as part of the Mss and Dss projects [3, 2].

Software Performance Estimation A static per-
formance evaluation method based on 1sA and code
models is being developed to provide estimates of
DsP software execution time. These estimates will be
used to guide system and software partitioning such
that timing constraints can be satisfied by the soft-
ware synthesis algorithms. Once software has been
created and compiled, the machine code is evaluated
to assess whether timing constraints and throughput
requirements have been satisfied. The static perfor-
mance evaluation method consists of two graph the-
oretic models: (1) a pipelined instruction execution
time (PIET) model which is accurate to the clock cycle
level, and (2) an instruction stream execution graph

(1SEG) model. The PIET model is comstructed for

each processor with a unique instruction set architec-
ture and takes into account all data path dependen-
cies including inter-instruction dependencies for accu-

input
instruction stream

pipeline instruction execution
time model

graph model for
instruction stream

output

execution time
of embedded code

Figure 5: Software Performance Evaluation

rate time évaluation. The ISEG model is constructed
for each software program being analyzed and is di-
rectly generated from the machine language instruc-
tion stream. The ISEG model evaluates all data and
control paths within the instruction stream during its
formation.

The flow of activities to perform static performance
evaluation is shown in Figure 5. The objective is to
obtain the estimated time of execution between any
two points in the instruction stream. This time is
obtained as an aggregate of the individual operation
times of each instruction in the instruction stream
given the PIET model of the 1sa of the target proces-
sor. All pipelined activity and potential hazards are
considered. The execution of each successive sequen-
tial instruction is evaluated until a branch instruction
is seen. These successive sequential instructions are
grouped into into basic blocks. The number of ma-
chine cycles for each basic block is determined using
the PIET graph. The ISEG graph is created as a stan-
dard control flow graph where basic blocks and branch
instructions are represented as nodes in the graph.
Edges in the graph represent flow of control.

The determination of execution time between any two
nodes in the graph proceeds by iteratively reducing
the flow network between the two nodes until the two
nodes are merged into a single node. Each reduction

step proceeds by first examining the flow network and
identifying a basic structure which can be reduced,
followed by computing the execution time of basic
structure and reducing the structure to a single node
whose label is the derived execution time. Branches
and loops are assessed based on the branch taken/not
taken probabilities which are in turn obtained from
the benchmark data patterns at the inputs of the soft-
ware being evaluated. Note that this data is usually
expressed in worst-case terms if worst-case execution
performance estimates of the software is desired. If
the estimated execution time of the entire software
program is desired, the entire I1SEG graph is reduced
to one node by the graph analysis algorithm. The esti-
mated execution time can then be compared with the
timing constraints of the system to determine if the
synthesized software satisfies the performance goals.

Reusual Behavioral Components COMET uses
a library of reusable hardware, software or unbound
components for synthesis. Performance of each li-
brary component is characterized using the same per-
formance estimation tools described above. System
synthesis in COMET is dependent on the availability of
one or more library components for each function spec-
ified in vsPEC. If a VSPEC function in a specification
has no corresponding component in the library, then
the user is asked to supply a component along with its
operational behavior description in VEDL. The perfor-
mance of the description for various target hardware
and software technologies will be evaluated using the
performance estimation and the component along with
this data will be stored in the library for later use (Fig-
ure 6).

4 System Partitioning

The goal of system partitioning is to generate a first
level hardware-software architecture of the system by
partitioning the system specification into specifica-
tions of hardware components and software compo-
nents. The hardware components will be further pro-
cessed by hardware synthesis tools. The software com-
ponents will be bound to execute on a selected DSP or
general purpose processor configuration. The hard-
ware and software components will be connected to
constitute a VSPEC-VHDL architectural description of
the system. The functional requirements and con-
straints stated in the VSPEC specification drive the
derivation of the specific hardware-software mix. Fig-

Figure 6: Performance Analysis for Library
Components

Figure 7: System Partitioning in COMET

ure 7 shows the system partitioning tool in COMET.

Initially, the VSPEC system specification is refined
based on queries into the design library. As a result
of the queries, components are selected based on their
ability to satisfy the system function and constraint
attributes. In case the existing components do need
meet the requirements, a design that partially satisfies
the requirements may be generated. Alternatively, the
designer may be queried for additional components.

5 Hardware Synthesis

COMET hardware synthesis system consists of a multi-
component partitioning engine and a set of synthesis
tools for asic, FPGA and McM synthesis (Figure 8).

Multicomponent Partitioning Engine The par-
titioning engine is a hierarchical partitioning and
package binding tool that accepts behavioral specifi-
cations in VHDL, constraints on area, power consump-
tion, pin counts, speed and cost and generates a hier-
archical partition of the specification with each com-
ponent in the partition bound to a package among
a set of available packages. The partitioning engine
uses a back-tracking algorithm for,constraint-directed
search. Power estimation is based on data gathered
by dynamic profiling of the VHDL specification using
typical stimuli.

Figure 8: Hardware Synthesis Flow in COMET

High Level Synthesis of ASICs: DSS The asic
synthesis system Dss (Distributed Synthesis System)
accepts behavioral specifications in VHDL and comn-
straints on clock period and area. It generates register
level designs in VHDL. Register level designs contain
‘two parts: a data path and a finite state controller.
The data path is in the form of structural VEDL in
which each component is instantiated from a prede-
fined parameterized register level component library.
Dss architecture is shown in Figure 9. For an overview
of the Dss system, see [2].

Register level designs generated by Dss can be pro-
cessed using various layout synthesis tools including
Lager IV and Mentor Graphics’ GDT tools. Figure 10
shows design flow using the Dss system. Test vectors
for register-level and switch-level simulations are auto-
matically created using a test-bench compiler. Figure
11 shows the design a processor (Move Machine) gen-
erated by DsS. DsSs has been used to generate numer-
ous designs including some industrial strength designs
by Texas Instruments [4].

MCM Synthesis: MSS McCM synthesis environ-
ment MsS [3] is embedded in COMET to facilitate syn-

Figure 9: DSS High Level Synthesis System

N WAVES
] Behavioral
VHDL Simuistor : Com t
—q l Syetem Libeary (m’-uvei)

‘L-_-.. te Synwpyys legic systhaais

. Svrucurat Cell Generator
Testveciors for mater @7 Library
tch-Level System

=

Switch-Level
Simuistor

Figure 10: ASIC Symthesis Uéing DSS

11

N
&\

//ﬁ/”/////// // / / vi m%%”{{/W /

%z
7

7
Z
7%
2
2
%
7
7
%
Z
7

%%

2
7

Figure 11: Move Machine

thesis of multichip modules. The tools in the Mss
environment are shown in Figure 12. Behavior spec-
ifications for Mss are written in VEDL. Performance
descriptions are written in PDL (Performance Descrip-
tion Language) [5, 6]. Multichip designs can be gener-
ated in two ways. As shown in Figure 12, register level
designs generated by Dss can be partitioned into mul-
tiple chip designs. Alternatively, as shown in Figure
13 an integrated behavior synthesis and partitioning
step can be performed to obtain multichip designs di-
rectly. These multichip designs are then processed by
package level place and route tools. We currently use
Mentor Graphics McM Station and plan to use Harris
EDA Finnesse system in pear future. Figure 14 shows
the McM design of the Find processor generated using
the Mss tools.

6 Software Synthesis

The software synthesis tools in COMET translates Dsp-
based software behavioral specifications expressed in
a subset of vEDLInto efficient machine code capable
of being executed in a multiprocessor environment.
The overall approach to software synthesis, shown in
Figure 15 is to translate behavioral descriptions ex-
pressed in VHDL into C and then use commercial C
compilers to translate C into machine code to execute
on the target processor. In this way, any processor
with a C compiler can be used as a target. The cur-
rently supported processors are the Texas Instruments

Swich Lovel Test .
Benchas (IRSM)

Figure 12: Multicomponent Synthesis System,
MSS

Row Performance

Hierarchical
Netiist Mansger

@)= re= .
=ICAE

H : VHDL and
VoL
| /oata Scheduler/ Form
Flow
Graph Estmator
$
VHOL for MCM and
Board Design
VIF {or Synthesis

‘Figure 13: Partitioning with Synthesis in MSS

TMS430C51, Sun Microsystems SPARC, and Intel
80386. As explained previously, the compiled code
can be statically analyzed for timing performance to
ensure compliance with timing constraints expressed
in the VSPEC specification.

The VHDL subset used as input for software synthe-
sis is similar to that used for AsIC synthesis [2]. VEDL
behavioral constructs are fully supported along with a
limited subset of structural constructs. Explicit tim-
ing , such as VHDL after clauses or specific time in
weit statements, is not supported.

Translation into C is a straightforward process. The
code generator is encapsulated in template functions
to allow future extensions to languages other than C.
For example, the code generator objects can be easily
changed to output Ada source code strings rather than
C source code strings.

The execution environment consists primarily of a
small multitasking operating system kernel which
will provide interprocess communication service, task
management, and input/output support. The task
scheduler will create, maintain and monitor all tasks
in the run-time space, while the interprocess commu-
nication protocol will support a simple message pass-

o]

1]

11
i
Vi

TIDZEE w27 11
IR IR AR

i
S AT T T Y
i osn > A
Rt TR
ssiEs
e 3k
: LAl fo
R e
i ke il
: = .
rv— o~ Y)| =1 ql
R ik Iy
¢ 1 P R
BT R e B TooceBeneelecnnee b BB el

Figure 14: Find MCM

Figure 15: Software Synthesis Flow in COMET

13 .

ing mechanism where a process writes its request and
data in a message channel whenever it tries to com-
municate with others, and then optionally waits until
a response is received. The I/O drivers will provide
a simple stream capability with support for objects of
arbitrary width. '

7 'Test Tools in COMET and MSS

COMET and MSS contain various tools for the testing
and simulation of designs as the design process pro-
gresses. Designs from behavioral level to gate level
are expressed in VHDL; any VHEDL simulator can be
used to simulate these designs. Test vectors are au-
tomatically generated at various levels of abstraction.
These test generation tools take WAVES files as input
and generate WAVES files as output. As shown in Fig-
ure 12, at the behavior level, the users write WAVES
data sets to simulate behavioral descriptions. A mul-
ticomponent test-bench compiler translates data sets
into individual wavEs data sets for each of the chips
in the multichip design. The data set also contains
expected responses so that automatic comparison be-
tween expected and actual respomses can take place.
Switch level simulation is facilitated by a switch-level

- test-bench compiler that generates switch-level tests
from WaVES data sets.

In addition to the automatically generated tests, users
can add additional tests to the WAVES data sets. To
aid users in this process, WAVES usages guide for mul-
ticomponent designs addressing both WAVES Level 1
and Level 2 constructs are being developed [7, §].

8 Conclusion

COMET design environment is under development as
part of the RASSP program. Mss and DSS systems
have been operational for over two years; their de-
velopment has been funded separately by Solid State
Electronics, Wright Lab and ARPA. COMET tools sig-
nificantly advance the state of the art in automated
and vertically integrated synthesis systems. Various
tools in the COMET cosynthesis system are interfaced
with other commercial and university tools within
the RASSP commurity and produce design and test
files in standard notations such as VEDL and WAVES.
Through the use of the VSPEC notation, the COMET
environment supports design synthesis from abstract,

declarative specifications of board and McM level dig-
ital signal processing architectures.

Acknowledgements - Besides the authors, the
COMET team includes Phil Baraona, Yueqin Lin, Rick
Miller, John Penix, John Rowe, Vinoo Srinivasan, Jeff
Walrath, and Danjin Wu.

References

[1] “Refine User’s Guide, Version 3.0”, Reasoning Sys-
tems Inc., Palo Alto, CA, May, 1990.

{2] Jay Roy, Rajiv Dutta, Nand Kumar, and Ranga
Vemuri, “DSS: A Distributed Synthesis System for
VHDL Specifications”, Design and Test of Comput-
ers, pp. 18-32, June 1992.

[3] Ranga Vemuri et al., “An Integrated Multicom-
ponent Synthesis System for MCMs”, IEEE Com-
puter, pp. 62-74, April 1993.

[4] Ranga Vemuri et al., “Experiences in Functional
Validation of a High Level Synthesis System”, 30tk
Design Automation Conference, pp. 194-201, 1993.

[5] Ram Mandayam and Ranga Vemuri, “Perfor-
mance Specification using Attribute Grammers”,
Design Automation Conference, June 1993.

[6] Ranga Vemuri, Ram Madayam, and Vijay Meduri,
“Performance Estimation and Tradeoff Analysis
During Rapid Prototyping”, University of Cincin-
nati, July 1994.

[7] W. Zhou, H. Hirsch, and R. Vemuri, “WAVES and
VEDL Modeling Guidelines”, RL-TR-94-56, Rome
Laboratory, May 1994.

[8] Jeff Walrath, John Rowe and Ranga Vemui-i,
WAVES Level 2 Usage Guide with Annotated Ezx-
amples, under preparation.

14

APPENDIX B
VSPEC: A Declarative Requirements

Specification Language for VHDL

Phillip Baraona, John Penix and Perry Alexander
Department of Electrical and Computer Engineering
Knowledge-Based Software Engineering Lab
The University of Cincinnati

Cincinnati, OH USA 45221-0030

pbaraonaQuceng.uc.edu

December 14, 1994

Abstract

VHDL allows a designer to describe a digital system by specifying a specific design artifact
that implements the desired behavior of the system. However, the operational style used by
VHDL forces the designer to make design decisions too early in the design process. In addition,
there is no means for specifying non-functional performance constraints such as heat dissipa-
tion, propagation delay, clock speed, power consumption and layout area in standard VHDL.
Thus, VHDL is not appropriate for high level requirements representation. VSPEC is a Larch-like
requirements language used with VHDL that solves these problems. VvsPEC adds seven clauses
to the VHDL entity structure that allow a designer to declaratively describe the data transfor-
mation a digital system should perform and performance constraints the system must meet.
The designer axiomatically specifies the transformation by defining predicates over entity ports
and system state describing input precondition and output postconditions. A constraints sec-
tion allows the user to specify timing, power, heat, clock speed and layout area constraints. In
combination with the architecture declaration, collections of VSPEC specified components can
define a high level architecture as interconnected collections of components where requirements
of components are known (via a VSPEC description), but implementations are not. This work
presents the VSPEC language and associated design methodology.

1 Introduction

VSPEC is a language for declaratively specifying digital systems. It annotates the hardware descrip-
tion language VHDL by adding seven new clauses to the entity construct. These clauses allow a

digital system to be specified using a declarative style as opposed to the operational style of VEDL.

15
December 14, 1994 2

With \./HDL alone, the only way to specify a digital system is by describing a specific design artifact
that implements the system’s desired behavior. On the other hand, vSPEC allows the designer to
describe the function of the system without defining the eventual implementation. In short, vSPEC
allows the specification of “what” a system should do as opposed to the VEDL description of “how”

the system will do it. This is consistent with Hoare’s definition of specifications [9].

In addition to allowing the specification of “what” instead of “how”, VSPEC addresses another
limitation of VHDL: specifying performance constraints. When designing a digital system, meeting
- certain non-functional (i.e. performance) constraints is equally as important as creating a system
that functions properly. A flight control system so slow that it calculates a flight correction after the
plane crashes is obviously inadequate. Since they are so important in digital systems, performance
constraints should be specified very early in the design process. However, VEDL does not provide
a consistent mechanism for specifying these types of constraints. VSPEC addresses this problem
by aliowing the designer to specify performance constraints such as heat dissipation, propogation

delay, clock speed, power consumption and layout area.

Anothér way of viewing VSPEC is as a Larch style interface language for viDpL. The Larch family
of specification languages supports a two-tiered, model-based approach to specifying programs [7].
A Larch specification consists of components written in two languages: an Interface Languagé
and the Larch Shared Language. Interface languages are used to specify the interfaces between
program components, including component inputs and outputs as well as the observable behavior

of the component. Interface languages exist for a variety of programming languges, including C [6],

C++ [2], Modula-3 [12] and Ada [5].

Definitions written in the Larch Shared Language (LSL) are the second component of a Larch
specification. LSL is a formal algebraic language that defines the underlying sorts and operators
used in the Larch Interface Languages (8, 3]. In the VSPEC system, REFINE [17] is the primary

shared language. REFINE is a language that contains a wide range of constructs, from high-level

December 14, 1994 ' 3

sets and transformations down to more traditional loops and conditional statements. All VSPEC
clauses can be translated into 2 REFINE representation. There are two main reasons REFINE was

chosen as the primary shared language for vsPEC.

Fii'st, LSL specifications are not executable. Since REFINE is a broad spectrum programming
language, some VSPEC specifications are executable. This is a very important feature for a digital
system specification language such as VSPEC. VEDL descriptions of digital system are simulated as
early as possible in the design cycle so that bugs can be found when they are the least expensive
to fix. This same concept extends to a VSPEC requirements specification of a system. The sooner a
bug in the requirements specification is found, the less expensive it is to fix. One way that problems
with the specification can be found at the earliest possible point in the design cycle is by executing

the specification.

The second reason REFINE was chosen as the primary shared language is that it supports synthesis of
behavioral VEDL from VSPEC. REFINE is one part of a suite of software synthesis tools. Supporting

synthesis of behavioral VEDL from VSPEC is one of the main long term goals of this research.

VSPEC is one part of the COMET research project. The goal of this project is to develop better
techniques for rapid prototyping of digital signal processing systems. A detailed description of
COMET is beyond the scope of this paper [22], but as the project overview in Figure 1 shows, a
COMET user begins by writing a description of the function and constraints of the system in VSPEC.
This description is then used to partition the system into hardware and software components with
an architecture for connecting these pieces together. Each of these components is synthesized and
integerated into a board level implementation of the system that is simulated and verified against

the original specification.

The remainder of this paper gives a more detailed description of vsPEC. The next section briefly
describes the VHDL constructs that are important in VSPEC. Section 3 gives a detailed description

of each of the seven VSPEC clauses. This is followed by an extended example where VSPEC is used to

17

December 14, 1994 : o 4

Functional Sp:nlh_ileﬂ.
® Requirements,
Comsiraints In VSPEC

Embedded
Hardware
Design Soltware
l___ —
Simulation
and
Veritication

Figure 1: Overview of the COMET project.

specify a small microprocessor. Following this is a section that describes the formal representation of
VSPEC. Section 6 discusses other work related to vSPEC and the paper concludes with a description

of the current status and future directions for this research.

2 Important VEDL Constructs

This section gives a very brief description of two of the VHEDL constructs used in vsPEC. It contaias
enough information to explain why the VSPEC annotations are needed in a speqiﬁcation language
for digital systems. For a more complete description of VHDL, refer to the VEDL language reference
manual [10] or a textbook on VHDL [16]. If you are already familar with VHDL, you can skip this

section and begin reading about the VsPEC clauses described in Section 3.

Two of the more important constructs in VHDL are entities and architectures. A VHDL entity

18

December 14, 1994 5

declares a digital component by defining the component’s interface. The function of the component
is not defined in the entity structure. Instead, each entity has one or more associated architectures
where the function of the component is described. This is the “big picture” of how entities and
architectures are used. The next few paragraphs give a more detailed description of each of these

constructs, starting with the syntax for a VEDL entity:

(entity_declaration) ::= ENTITY (identifier) IS
(entity-header)
(entity_declarative_part)
[BEGIN v
(entity_statement_part) |
END [(Entity_simple_name));

The most important portion of the entity declaration is the entity header. The only part of the entity
header currently used in VSPEC is the port clause. A port clause defines the inputs and outputs of

the component. Here is an example entity declaration for a simple two input multiplexor:

ENTITY vhdl_mux IS
PORT (DO, D1, cntrl : IN BIT;
, output : OUT BIT);
END vhdl_mux;

Notice that this entity merely defines the types of the inputs and outputs to the multiplexor. It

does not contain any description of the function of the entity.

The function of the multiplexor is described in the VHDL architecture. Each entity has one or more
associated architectures. An architecture is used to define the behavior of a specific implementation

of an entity. The syntax of the architecture construct is as follows:

(architecture_body) ::= ARCHITECTURE (identifier) OF (Entity_name) IS
(architecture_declarative_part)

19
December 14, 1994 6

BEGIN
(architecture_statement_part)
END [(Architecture_simple_name)];

Detailed descriptions of each portion of the architecture are beyond the scope of this document
(see [10, 16]). Suffice it to say that the declarative part of the architecture defines the types, signals
and components used by the architecture while the statement part defines the behavior or structure

of the entity. Consider the following architecture for the multiplexor entity above:

ARCHITECURE behavior OF vhdl_mux IS
BEGIN
PROCESS (DO, D1, cntrl)
BEGIN
IF cntrl = 0 THEN output <= DO;
ELSE output <= Di;
END PROCESS
END behavior;

This is an example of a behavioral architecture. Behavioral architectures use ADA-like program-
ming constructs to define the function of an entity. In this simple example, an if-then statement is
used to assign a value (<= is used for signal assignment) to the output port based on the value of

cntrl. Although this is a simple example, behavioral architectures can be quite complex. Auxil-

‘iary procedures and functions can be written in the declarative part of the architecture and entire

packages of library routines can be used within the architecture. With these auxiliary procedures
and packages, a behavioral architecture can be defined using a large program. No matter what size,

all behavioral architectures have one thing in common: they define a single implementation of the

~ behavior of an entity.

Structural architectures are the second common type of VEDL architectures. This architecture type
defines the subcomponents an entity is composed of and how those subcomponents are connected.
For example, the behavior of the multiplexor could also be defined using and, or and not gates

connected as shown in Figure 2. In VHDL, this is represented using the followiflg architecture:

20

December 14, 1994 : 7

Do DO_set
entrl ——@——

N4) >
D1 ‘
‘ D1_set

cntrl_prime

Figure 2: Structural Implementation of Multiplexor

ARCHITECTURE structure OF vhdl_mux IS
COMPONENT and_gate PORT (in1, in2 : IN BIT; output : OUT BIT);
END COMPONENT;
COMPONENT or_gate PORT (ini, in2 : IN BIT; output : OUT BIT);
END COMPONENT;
COMPONENT not_gate PORT (input : IN BIT; output : OUT BIT);
END COMPONENT;
SIGNAL DO_set, Di_set, cntrl_prime : BIT;
BEGIN, :
and_1 : and_gate PORT MAP (ini1=>D0, in2=>cntrl, output=>DO_set);
and_2 : and_gate PORT MAP (ini1->Di, in2=>entrl_prime, output=>Di_set);
not_1 : not_gate PORT MAP (input=>cntrl, output=>cntrl_prime);
or_1 : or_gate PORT MAP (in1=>DO_set, in2=>D1_set, output=>output);
END structure;

In this example, the declarative part of the architecture defines three components and three signals.
The component declarations (and_gate, or_gate and not_gate) define the inputs and outputs of
three sub-components that will be used in this architecture. The behavior and/or structure of these
three sub-components must be defined by an entity/architecture pair somewhere else in the system
(not shown here). Another VHDL construct, the configuration, is used to map components to the
the entity/architecture pair that define the behavior of the component. The three signals declared
(DO_set, D1_set and cntrl prime) are used to connect these three components together as shown

in Figure 2.

Instances of each of the components in the architecture’s declarative part are created in the state-

ment part (between begin and end). The port map for each instance shows how that particular

21

December 14, 1994 8

component instance is connected to the signals in the architecture.

Although this example is very small, the same basic concepts defined here scale to much larger sys-
tems. This multiplexor could be part of an ALU which is a sub-component of a large microprocessor
which is itself one component on a board level system. The same type of structural architecture is
used to connect the system together at each of these levels. The lowest level (the and, or and not
gates in this example) contains a behavioral description of the components. Because VSPEC is an

extension of VEDL, these features for dealing with large systems are also found in VSPEC.

3 The vsrEc Clauses

The VSPEC language annotates VHDL by adding seven new clauses to the entity structure. The

modified syntax for the entity structure becomes:

(entity_declaration) ::= ENTITY (identifier) IS
(entity_header)
(vspec_clause_list)
(entity_declarative_part)
[BEGIN]
END [{Entity_simple_name)};

The only change made to the VHDL syntax was the addition of the optional VSPEC clause list to the
entity declaration. ! All other constructs remain intact. A VSPEC clause list is a list of the seven

VSPEC clauses separated by commas:

(vspec_clause_list) ::= (vspec_clause) { ; (vspec-clause) } ;

1This statement is not completely accurate since VHDLS expression syntax was also extended to include quantifiers,
logical implication and support for sets and sequences. This is described in a little bit more detail in the VSPEC
Language Reference Manual [13}.

22

December 14, 1994 9
(vspec_clause) ::= [(requires.clause)] | [(ensures_clause)] | [{state_clause)] |
[{constrained_by.clause)] | [(modifies_clause)] | [(based-on_clause) | | [(includes_clause)]

These VSPEC clauses can be grouped into four broad classes. The first class defines the function
of the entity and includes the requires and ensures .cla.uses. The next class declares the internal
state of the entity in the state clause. The third type of vsPEC clause is used to define the
constraints placed on the system. The constrained by and modifies clauses fall into this category.
Finally, the includes and based on clauses are used to help map the vsPEC definition to its formal
representation in REFINE. These are the only two clauses that can appear more than once in a
VSPEC clause list. The following sub-sections describe each of these clauses in a little bit more

detail.

3.1 Requires Clause

(requires_clause) ::= REQUIRES (logical_ezpression) ;

The requires clause states the pre-condition for the entity. If the entity’s inputs and current state
make the requires logical expression true, then the entity is guaranteed to perform its specified
function. The behavior of the entity is undefined if the requires clause is false. A designer that
uses an entity specified with VSPEC must ensure that the requires logical expression is true before

the entity is used. Consider the following example:

ENTITY search IS :
PORT (input : IN ARRAY OF record_type;
key : IN INTEGER;
output : OUT record_type)
REQUIRES sorted(input);
ENSURES element_of(output, input) AND output.keyval = key;
INCLUDES "sort.re", "set.re";
END search;

23
December 14, 1994 ‘ : : _ 10

In this example, sorted is a function defined in the file “sort.re” (see description of includes clause
in Section 3.6) that returns true if the array passed in is in order and false otherwise. The search
entity above will only function properly if the input array is sorted. If the input is not in order,
the function of search is undefined. The function of all entities is undefined if the requires clause
is false. F(;r this reason, it is best to keep the pre-conditions expressed in the requires clause as
simple as possible. The more conditions that must be met for the requires clause to be true (i.e.
the more complex the pre-condition), the more difficult it will be to meet the pre-condition and use
the entity. Thus, the pre-condition should be kept as simple as possible. A pre-condition of true

implies the entity has no pre-condition. It must function properly on all input values.

One portion of the requires clause definition has been kind of ignored to this point: What is a
logical expression? All logical expressions in the VSPEC clauses use a syntax that is an e.xtension
of vEDL. The VHDL expression syntax supports the standard boolean expressions and, or and not.
VSPEC'I extends this syntax by adding constructs for variable quantification and logical implication.
In addition, the VSPEC expression syntax includes constructs for sets and sequences. See the VSPEC

Language Reference Manual [13] for a more detailed description of the syntax of VSPEC expressions.

3.2 Ensures Clause

(ensures_clause) ::= ENSURES (logical_ezpression) ;

The ensures clause states the post-condition of the entity. A designer implementing an entity
specified with VSPEC must ensure that this logical expression is true whenever the entity processes
valid input (i.e. input that makes the requires logical expression true). Consider the following

example:

ENTITY vhdl_mux IS
PORT (DO, Di, cntrl : IN BIT;

24

December 14, 1994 11

output : OUT BIT);
REQUIRES true; _
ENSURES output = (DO AND cntrl) OR (D1 AND (NOT cntrl));
END vhdl_mux;

This is a VSPEC description of the two input multiplexor specified in Section 2. The requires
clause states that this entity is guaranteed to work for all legal values of the input varaibles. The
logical expression in the ensures clause declaratively specifies the function of the entity. The logical
expression is a condition that must be true when the entity functions properly. Thus, the ensures

logical expression describes the functional requirements of the entity.

For this simple multiplexor example, the differences between a VHDL behavioral description and
VSPEC may not seem that significant. For a more telling example, consider the specification of a
sorting component. In VHDL, the simplest way to speicify a sorter is an entity with a behavioral
architecture describing its function. This behavioral architecture would be an ADA-like description
of a épeciﬁc sorting algorithm such as bubble sort or quicksort. This forces the design of the
component to a specific implementation at a very early stage in the design process. In reality, this
behavioral architecture is a description of “how” the sorter should work, not “what” the sorter
should do. It biases the implementation towards a specific design (i.e. a bubble sort or quicksort)

and forces a designer to deal with unneccessary detail at a very early point in the design process.

On the other hand, a sorting component could be described in vsPEC like this:

ENTITY sorter IS
PORT (input : IN ARRAY OF INTEGER;
output : OUT ARRAY OF INTEGER);
REQUIRES true;
ENSURES permutation(output, input) AND
sorted(output);
INCLUDES "sort.re";
END sorter;

In this example, permutation is a function (defined in “sort.re”) that returns true if output

contains all the same elements as input while sorted is the same function used in Section 3.1.

25
December 14, 1994 12

This code describes a sorting component as something that ensures input and output contain the
same elements and that output is in order. Thus, the specification above describes the functional
requirements of the sorter without describing an implementation of a sorting algorithm. In other
words, this definition describes “what” the sorter must do instead of defining “how” it should be
done. VHDL alone does not allow this type of description. The VSPEC ensures and requires clause

add this feature to VHDL.

3.3 State Clause

(state_clause) ::= STATE (vspec_variable_declaration_list) ;

The purpose of the state clause is to define a list of variables that store the state of an entity.
In most algebraic specification languages (such as Larch [7]), a computational unit is defined as a
transformation from inputs to outputs. This type of transformation is not adequate for specifying
systems with vsPEC. Unlike typical subprograms, an entity’s local storage is not re-initialized for
each use of the entity. Buffers and registers retain their values from one use of the entity to the
next. The state clause provides a means to model this. The variables declared in the state clause
serve as the local storage for the entity. In addition, hardware designers very naturally think in
terms of the state of a device and the state clause allows them to extend this thought process to

the specification of the digital system.

The syntax for a VSPEC variable declaration list is:

(vspec_variable_declaration_list) ::= (vspec_variable_declaration) {, (vspec_variable_declaration) }
(vspec_variable_declaration) ::= (identifier_list) : (subtype_indication)

An identifier list is a comma-separated list of identifiers while a subtype indication is the vEDL

construct used to declare the type of a variable. In most cases, this is just an identifier that names

26

December 14, 1994 ' 13

the type of the variable(s) declared, but refer to the VEDL documentation for a more complete

description (10, 16].

3.4 Constrained By Clause

(constrained_by-clause) ::= CONSTRAINED BY (logical_ezpression) ;

While the ensures clause is used to describe the functional requirements placed on a system, the

constrained by clause is used to describe the performance requirements of the system. Consider

the affect of adding the following clause to the sorter example in Section 3.2:

CONSTRAINED BY
size <= 2 um * 5 um AND
, power <= 20 mV AND
input<->output <= 100 us;

With this additional clause, the VSPEC entity now supplies information about the area the entity
must be implemented in, the maximum power consumption of the entity and the pin to pin timing
for the entity. VEDL does not provide a convenient way to specify these types of performance con-
straints. The constrained by clause provides a standard method for specifying the non-functional

requirements of the system.

The logical expression used in the constrained by clause must be a conjunction of constraint

expressions. The syntax for these expressions is:

(constraint_ezpression) ::= (constraint_type) (relational_op) (constraint_value)

where the relational operators are the standard VHDL operators <=, <, >=, >, = and /= (not
equal) and the constraint value is either a physical literal or a product of two physical literals (i.e.

10 um * 40 um). In VHDL, a physical literal is simply a number followed by a unit (10 mW, for

27
December 14, 1994 14

example). Each constraint expression restricts the legal value of the constraint type to a given

range, for instance power < 1 V.

VSPEC currently recognizes five constraint types: area, heat dissipation, power consumption, clock
frequency and pin to pin timing. In a constraint expression, the first four of these constraint
types are referenced with an identifier. Respectively, these identifiers are area, heat, power and
clock frequency. A slightly different notation is used to specify the final constraint type, pin to

pin timing. The syntax for this type of constraint is:
(timing_ezpression) 1= (input_pin) <-> (outpui_pin)

where input pin and output pin are identifiers that represent an input and an output port of the
entity. Thus, an expression such as input <—> output < 100 us states that a change in the data

at the input port is propogated to the output port in less than 100 microseconds.

As mentioned above, constraint values are either a physical literal or the product of two physical
literals. Area is the only constraint type where a constraint value is the product of two physical
literals. Area must be specified in this fashion with the two values representing the bounding box

that the entity must fit into. All other constraint types have values that are physical literals.

There are several predefined units that are used for constraint values in vsPEc. The base units of
these predefined units are meters for area, volts for power consumption, hertz for clock frequency
and seconds for pin to pin tirﬁing‘ In addition to these base units, each of these units can also
be expressed using the standard metric prefixes (i.e. area could be fm, um, mm, cm, m or km).
VHDLalso allows the declaration of virtually any other physical type (see physical type definition in

a VHDL reference {10, 16]).

In addition to the five pre-defined constraints, VSPEC users can create their own constraint types.
At the present time, this has not been implemented in the VSPEC system, but this functionality is

a part of the overall plan for the language.

28
December 14, 1994 15

3.5 Modifies Clause

(modifies_clause) ::= MODIFIES (identifier_list) ;

The modifies clause is used to help build a list of signals and variables the entity will modify. The
entity is guaranteed to change only the signals in this modifies list. The value of all other signals in
the entity will be left unchanged. Since out mode port signals and all variables in the state clause
would serve no purpose if the entity did not change them, all out mode port signals and variables
in the state clause are automatically included in the modifies list. You may explicitly write them
in the identifier list in the modifies clause if you desire, but this is an unneccessary step. On the
other hand, global variables 2 and buffer/inout mode port signals may only be modified if they é.re
included in the modifies list. It is an error to place in mode port signals in the modifies list since
the definition of VEDL does not allow an entity to change the value of an input signal. Here is a

simple example to clarify the signals and variables that will and will not occur in the modifies list:

ENTITY modifies_example IS
PORT (A : IN integer;

B : OUT real;

C, D : BUFFER bit;

E, F : INOUT bit);
STATE G : integer;
MODIFIES C, E;

END modifies_example;

The list of signals/variables this entity will modify is C, E, B and G. € and E are included in this list
because they are explicitely stated in the modifies clause. B is included because it is an output
signal. All architectures of an entity must assign a value to all entity output signals. Thus, B

is automatically included in the modifies list. G is included in this list for a similar reason. The -

2Global variables were added to the 1993 version of VHDL. Previous definitions of the language did not contain
global variables.

29
December 14, 1994 16

definition of VSPEC forces the entity to assign a value to all state variables so all state variables are

automatically included in the modifies list.

3.6 Includes Clause

(includes_clause) ::= INCLUDES (string_literal_list) ;

The includes clause is used to include a REFINE program in a VSPEC specification. This REFINE
program defines the functions and types used in the specification and it helps map the vsPEC
specification to its formal representation in the REFINE object base. A VSPEC specification may
contain as ma.ny. includes clauses as the usér needs to describe the system. We have already seen

an example of the includes clause in the search entity described in Section 3.1:

ENTITY search IS
PORT (input : IN ARRAY OF INTEGER;
key : IN INTEGER;
output : OUT ARRAY OF INTEGER)
REQUIRES sorted(input);
INCLUDES "sort.re", "set.re";
END search;

In this example; the file “sort.re” contains the following REFINE definition of the sorted function:

function sorted (input-seq : seq(integer)) : boolean =
if (size (input-seq) = 1) then
true '
else
(input-seq(1) < input-seq(2)) and sorted (rest(input-seq))

This is a boolean function that returns true when the input sequence is in order from smallest to
largest. In formal logic, a boolean function is called a predicate. VSPEC users can define arbitrarily

many predicates that are used to describe the observable behaviors of the system being designed.

December 14, 1994 17

Each of these predicates can appear in the requires or ensures clauses to describe a functional
requirement of the system. All of the predicates that appear in these clauses must be defined in a

REFINE file that is listed in one of the includes clauses in the entity where it is used.

3.7 Based On Clause

(based-on_clause) ::= (vspec-type) BASED ON (refine_sort)

The based on clause is used to map a data type used in VSPEC to its definition in REFINE. ‘This
definition in REFINE is called a sort. In the syntax above, vspec type is an identifier that refers to
the data type used in VSPEC and refine sort is an identifier that represents the corresponding sort

in REFINE.

The VSPEC system provides a built in mapping to REFINE for all predefined types in vEDL. This is
accomplished by automatically including based on clauses for these predefined types in all VSPEC
entities. The VHDL typesv integer, real, boolean, character and string map to their corre-
sponding types in REFINE. The VHDL types severity_level, bit and bit_vector map to the

following definitions in REFINE:

type severity_level = {’note, ’warning, ’error, ’failure}
type bit = {0, 1}
type bit_vector = seq(bit)

This means that the VSPEC systems adds based on clauses such as integer BASED ON integer,
character BASED ON char and bit_vector BASED ON bit_vector to all VSPEC entities. In addi-
tion, vsPEC automatically includes a REFINE file that contains the three types above. With these
clauses included in all VSPEC entitics, the predefined types in VEDL may be used in any VSPEC

specification.

51
December 14, 1994 ' 18

4 Formal Representation of VSPEC

All vsPEC definitions can be transformed into a formal definition. This formal definition is based
on an extension of domain theories defined in the cYPRESs [19] and KIDs [21, 20] systems. CYPRESS
and KIDS are software synthesis systems that can be used to synthesize an efficient executable
program from an algebraic specification. A domain theory is used to describe the problem to be
synthesized. It consists of a tuple of the domain (D), range (R), input pre-condition (I(z : D))
and output post-condition (O(z : D,z : R)) commonly referred to as a DRIO model. In VsPEC,

the DRIO model can be constructed using the following rules:

D =d; xd; X ...x d, where each dj is the sort (defined by the based on clause) representing the

type associated with an in, inout, or buffer port or a state variable

R=171XTyX...X Ty where each r; is the sort representing the type associated with an element

in the modifies list (see Section 3.5)
I(z : D) = I,(z : D) where I,(z : D) is the logical sentence defined by the requires clause

O(z:D,z: R)=0y(z:D,z: R) where Oy(z : D,z : R) is the logical sentence defined by the

ensures clause

VSPEC is somewhat different from the specification languages that are normally used with CYPRESS
and KIDS. A specification language for digital systems must provide a means for describing the
performance constraints of the system. One way to do this would be to include these types of
constraints in the output post-condition for the system. Howeyer, this is not the approach taken
with vsPEC. Performance constraints have nothing to do with the function of the system so we feel
it is appropriate to separate them from the functional requirements defined in the post-condition

of the system (i.e. the ensures clause).

32

December 14, 1994 19

This is one reason the constrained by clause is included in vsPEC. The system’s performance
constraints are specified in the constrained by clause while the ensures clause describes the
functional requirements of the system. The performance constraints can be represented in the

formal model of vsPEC by extending the DRIO to a DRIOC model:

Cle1:C1y.veyen: Cp) = Cylecy 1 Ch,y...ycn : Cp) where ¢ is a constraint variable such as heat or
area, C} is a sort associated with a constraint variable and C,, is the logical expression defined

in the constrained by clause

The definitions in the DRIOCdescribe the system as a transformation mapping the current state
and inputs into the next state and outputs such that when the input pre-condition is satisfied the

output post-conditidn and constraints are also satisfied. Formally, this can written as:

Vz:DelI(z)= O(z, f(z))ANC(c1,...5¢n) (1)

where f(z) is the transformation performed by the system. This axiom shows the relationship
between the design, f(z), and its requirements. In VvsSPEC, I(z) is derived from the requires
clause, O(z,z) from the ensures clause and C(cy,...,¢,) from the constrained by clause. In
VSPEC f(z) will be defined using behavioral vEDL. Finding f(z) given I, O and C is the synthesis
problem addressed by COMET. Proving the equation above is true for a given f(z), I, O and C

verifies that f(z) is an implementation of the VSPEC specification.

December 14, 1994 ’ 20

5 Extended Example: 16-bit Move Machine

5.1 Problem Description

The Move Machine is a simple microprocessor whose instructions move data between CPU registers
and main memory [18]. The computational units of the machine are assumed to be memory mapped.
With this assumption, arithmetic and logical computations are performed as side effects of moving

data to and from designated memory locations.

5.1.1 Physical Configuration

The physical storage components of the Move Machine are a main memory array and a set of
registers. The registers consist of an instruction pointer, an instruction register, and an array of

general purpose registers.

In this example, a 16-bit Move Machine is specified. The configuration used has 16 general purpose
registers, each 16 bits long. The main memory size is 512 bytes (256 16-bit values), requiring 8-bit

addressing. The instruction pointer is 8 bits and the instruction register is 16 bits.

5.1.2 Instruction Format

The instructions of the 16-bit Move Machine have four fields:

e A two bit op-code. The four operations that the Move Machine has are: load, store, jump,

and halt.

e A two bit addressing mode which determines how the effective address is specified in the

instruction. The four addressing modes are: absolute, immediate, indirect, relative.

o A four bit register identification to specify which register is to take pért in the operation.

34

December 14, 1994 21

o An eight bit effective address which, in conjunction with the addressing mode, determines

which memory location takes part in the instruction.

5.1.3 Processor Operation

The I/0 interface to the Move Machine consists of a start signal, a finished signal and a clear signal.
When the start signal is received, the processing cycle begins. When the machine halts (executes
a halt instruction), the finished signal is set. The clear signal resets the machine and prepares it

to receive the start signal.

The Move Machine has a three phase processing cycle. In the first phase, the instruction referenced
by the instruction pointer is fetched from memory. In the second phase, the effective address is
calculated according to the specified addressing mode and the instruction pointer is incremented

to reference the next instruction. In the third phase, the fetched instruction is executed.

5.2 Specification of the Move Machine

The first step in specifying the behavior of the Move Machine is to define abstract data types
in REFINE. These types and there associated operations will provide the vocabulary necessary
to describe the behavior of the Move Machine. Once this foundation is laid, defining the vsPEC
interface specification can begin. First, the input, output, and state variables are specified. Then

the desired behavior is described using the appropriate VSPEC clauses.

5.2.1 Abstract Types and Operations

Abstract data types and operations are specified using the REFINE language. REFINE supports
a host of set theoretic data types, such as sets, sequences, tuples, and maps. Sets and sequences

represent unordered and ordered collections of objects, respectively. Tuples are an ordered collection

December 14, 1994 . 22

of related data, similar to a VEDL record. Maps represent a functional relation between two types.
Formally, they are a set of 2-tuples such that M(z) = y means that (z,y) € M. Some additional
REFINE constructs will be introduced as they are used in the example. REFINE has a complete
array of operations for the predefined data types. For a more complete explanation of REFINE

types and operations, see the REFINE User’s Manual [17].

Figure 3 shows the REFINE speciﬁca,tion of the Move Machine data types and operations. The
first section in Figure 3 shows the predefined VHDL types available for use within the REFINE
speciﬁcatibn. These are shown for reference, to make the example self-contained. The predefined
VHDL types are shown in all caps whenever they are used. The next section in Figure 3 is a group

of constant declarations that define the hardware configuration of the Move Machine.

The next group of declarations are the abstract data types. First, the Word type is introduced as
a set of BIT_VECTOR. Next, the Address type is defined as an integer subrange. Variables of type
Address will have an integer value between 0 and MM_Size-1. The type Memory_Array is defined as
a map from Addresses to Words. This means that for a Memory_Array, M, and an Address, x, the
Word at memory location x is simply M (x). Notice that the size of a Memory_ Array is restricted
by the upper bound of the Address integer range. Register_Array and Register_Id are specified

in the same manner as Memory_Array and Address.

The abstract type Operation is defined to describe the four possible Move Machine operations.
- This is done using a symbol. Symbols are a REFINE type used to represent an abstract value. They
are not strings or sequences of characters. Each symbol literal is a unique atomic value. The Move

Machine’s four addressing modes are similarly represented by the Add Mode type.

The Instruction type is a 4-tuple representing the four fields of the instruction. The tuple values
are accessed in the same manner as fields of a record. The op.code value for an Instruction, i,

is simply i.op_code.

The last data type specified is Proc_State. This type is used to represent the abstract states of the

36

December 14, 1994 ’ 23

%-- REFINE move_mc_types.re —- abstract type for the Move Machine.
% The following lines are needed in all Refine programs

't in-package("RU")

14 in-grammar(’user)

% predefined VHDL types and operations

% type BIT = boolean

% type BIT_VECTOR = seq(BIT)

% function bits_to_int(b:BIT_VECTOR) : INTEGER

% Move Machine constant declaratioms
constant MM_Size : INTEGER = 256
constant Register_Array_Size : INTEGER = 16
constant Word_Size: INTEGER = 16

% Move Machine type declarations
yp

type Word = BIT_VECTOR
type Address = {0..MM_Size-1} % integer range
type Memory_Array = map(Address,Word)
type Register_Id = {0..Register_Array_Size-1} Y% integer range
type Register_Array = map(Register_Id,Word)
' type Operation = SYMBOL
type Add_Mode = SYMBOL
type Instruction =
tuple(op_code : Operation, addr_mode : Add_Mode,
reg_id : Register_Id, eff_addr : Address)

type Proc_State = SYMBOL

% Operations over the Move Machine types
function Word_to_Instr(data : Word) : Instruction =
< Decode_Op(subseq(data,0,1)),
Decode_AM(subseq(data,2,3)),
bits_to_int(subseq(data,4,7)),
bits_to_int(subseq(data,8,15)) >

function Decode_Op(data : seq(BIT)) : Operation
computed-using data = [false,false] => Decode_Op(data) = ’load,

data = [false,true] => Decode_Op(data) = ’store,
data = [true,false] => Decode_Op(data) = ’jump,
data = [true,true] => Decode_Op(data) = ’halt

function Decode_AM(data : seq(BIT)) : Add_Mode
computed-using data = [false,false] => Decode_AM(data) = ’absolute,

data = [false,true] => Decode_AM(data) = ’immediate,
data = [true,false] => Decode_AM(data) = ’indirect,
data = [true,true] => Decode_AM(data) = ’relative

Figure 3: Move Machine data types and operations.

87

December 14, 1994 ‘ 24

Move Machine’s operation. The three processing phases, fetch, decode, and execute, are represented
along with start and stop states. The allowable actions of the Move Machine’s behavior will be

expressed as transitions between these five processor states.

The last section in Figure 3 is the specification of Word.to.Instr, an operation that converts
between Wordé and Instructions. This conversion will be necessary becéuse instructions are
stored in memory as words. Notice that syntax of REFINE permits simply equating the function
with a tuple construct. The values of each of the tuple fields are themselves function calls. The
REFINE subseq operation is used to extract a smaller sequence from an existing sequence. This
operation can be used with the type Word, because it is a BIT_-VECTOR which is a sequence of BITS.

The functions Decode_Op and Decode_AM are used to precisely define the operation and addressing |

mode deciding scheme.

5.2.2 VsPEC Interface Specification

This section contains a detailed description of the interface specification for the Move Machine.
The entire specification is shown in Figure 4. We will describe each section of this specification
separately, starting with the port declaration. This is where the entity movemc is created and its
1/0 ports are declared in standard VEDL syntax. The start and clear signals are defined as inputs

and the finished signal is defined as an output. The Move Machine port declaration is:

entity move_mc is

port (Start: in BIT; -- Begin processing
Clear: in BIT; -- Restart processing
Finished: out BIT); -- Processing completed

The vsPEC includes clause follows the port declaration:

includes "move_mc_types.re";

38

December 14, 1994

entity move_mc is

port (Start: in BIT; -~ Begin processing
Clear: in BIT; -- Restart processing
Finished: out BIT); -- Processing completed

includes "move_mc_types.re';

state
phase: Proc_State, -- Abstract Processor State
Memory : Memory_Array, =- Main Memory
IP : Address, -- Instruction Pointer
IR : Instructionm, -- Instruction Register
RGST : Register_Array, =- General Purpose Registers
EA : Address, -~ Effective Address
ensures

phase = start implies (Start = ’1’ implies phase’post = fetch)
and (Start = ’0’ implies phase’post = start)
and IP’post = 0
and Memory’post = Memory and RGST’post = RGST
and
phase = fetch implies IR’post = Word_to_Instr(Memory(IP))
and phase’post = decode and Memory’post = Memory
and RGST’post = RGST and IP’post = IP
and
phase = decode implies phase’post = execute
and (IR.addr_mode = absolute implies
EA’post = IR.eff_addr and IP’post = IP + 1)
and (IR.addr_mode = immediate implies
EA’post = IP + 1 and IP’post = IP + 2)
and (IR.addr_mode = indirect implies
EA’post = Word_to_Instr(Memory(IR.eff_addr)).eff_addr
and IP’post = IP + 1)
and (IR.addr_mode = relative implies
EA’post = IP + IR.eff_addr and IP’post = IP + 1)
and Memory’post = Memory and RGST’post = RGST and IR’post = IR
and
phase = execute implies
(IR.operation = load implies RGST(IR.reg_id) ’post = Memory(EA)
and forall(x:Register_Id)
(x /= IR.reg_id implies RGST(x)’post = RGST(x))
and (IR.operation /= load implies RGST’post = RGST)
and (IR.operation = store implies Memory(EA) ’post = RGST(IR.reg_id))
and forall(x:Address)(x /= EA implies Memory(x) ’post = Memory(x))
and (IR.operation /= store implies Memory’post = Memory)
and (IR.operation = jump implies IP’post = EA)
and (IR.operation /= jump implies IP’post = IP)
and (IR.operation = halt implies phase’post = stop)
and (IR.operation /= halt implies phase’post = fetch))
and
phase = stop implies Finished’post = ’1°
and (Clear = ’0' implies phase’post = stop)
and (Clear = '1’ implies phase’post = start)
and Memory’'post = Memory and RGST’post = RGST
and
phase /= stop implies Finished’post = 0’;
end move_mc;

Figure 4: vsPEC interface specification for the Move Machine

25

December 14, 1994 26

The includes clause states that this specification will use abstract types and operations defined

in the file move.mc_types.re, which was described in the previous section.

The behavior of the Move Machine is specified by describing the allowable transactions between
processor states [14]. To do this, we must first definine the information that determines the processor
state. The Move Machine has a three phase processing cycle which can be viewed as processor states.
The addition of a start and a stop state defines a set of states which uniquely describes the status of
the Move Machine at any moment in time. The abstract type Proc_State was defined specifically
for this purpose. Therefore, the state clause contains the vﬁ.riable phase of type Proc_State to

model the processor state:

state
phase: Proc_State, -- Abstract Processor State
Memory : Memory_Array, =-- Main Memory
IP : Address, -- Instruction Pointer
IR : Instruction, -- Instruction Register
-RGST : Register_Array, =-- General Purpose Registers
EA : Address, -~ Effective Address

Naturally, the values of the registers and main memory are of interest when observing the behavior
of the processor. Variables of these type are declared in the state clause to model these physical
structures. In addition, any internal signals that are used to communicate between processor states
must be declared as state variables. The effective address is calculated in the decode phase but it
is used in the execute phase. Therefore, the variable EA of type Address is declared to store the

effective address between states.

Given a set of input and state variables, the VSPEC ensures clause can be used to specifiy the
allowable changes to the output and state variables. In this way, the behavior of the Move Machine
is defined. The Move Machine ensures clause is structured according to the value of the phase

variable. This clarifies the specification of the state transactions that are allowed during each phase

40

December 14, 1994 27

of processor execution. The allowable transactions for each phase are then conjuncted together to

provide a complete behavioral specification.

The permissible next state values must be explicitly constrained for each state variable. If a state
variable is not constrained, then presumably it is allowed to take on any value of the associated
type. It is not assumed that unconstrained variables remain unchanged. Constraining a variable’s
behavior is accomplished using the VSPEC implies operator to define the next state values that
are possible during each processor phase. In this example, the next state values are determinant,
but this is not a necessary condition. Non-determinism can be modeled by disjuncting allowable

next state values.

The first part of the ensures clause specifies what transactions are allowed during the start phase.
While in the start phase, the processor is simply waiting for the start signal to begin processing. If
the processor does not receive the start signal, it stays in the start phase. This constraint on the
next state value of the phase variable (phase’post) is specified by the first two conjuncts implied
by the start phase. Note that the notation <variable>’post, where <variable> is the identfier for
the variable, is used to refer to the value of the variable after the transaction occurs. Here is the

part of the ensures clause which describes the start phase:

phase = start implies (Start = ’1’ implies phase’post = fetch)
and (Start = ’0’ implies phase’post = start)
and IP’post = 0
and Memory’post = Memory and RGST’post = RGST

The conjunct, IP’post = 0, states that the first instruction will be retrieved from memory location
0. The final two conjuncts specify that the main memory and register values must remain unchanged
during this processing phase. Without these constraints, the specification would be satisfied by an
implementation where the memory and registers values arbitrarily change during this state, which

is not the desired behavior. Notice that the state variable EA is not constrained during this phase.

41

December 14, 1994 _ 28

At this point, the EA variable does not contain any information which will effect the future state
of the machine. Therefore, the specification need not be constrained to retain the value of this

variable.

The Move Machine behavior during the fetch phase is described by:

phase = fetch implies IR’post = Word_to_Instr(Memory(IP))
- and phase’post = decode and Memory’post = Memory
and RGST’post = RGST and IP’post = IP

During the fetch phase, the instruction pointer is updated to ontain the interpretation of the word at
memory location IP. Here, the interpretation is performed by the Word_to_Instruction function
defined in the previous section. The next processing phase is specified to be decode, while the

memory and remaining register values remain unchanged.

. The state changes which occur during the decode phase hinge on the addressing mode. Therefore,

the majority of the specification of the decode phase is structured around the value of IR.addr.mode:

phase = decode implies phase’post = execute

and (IR.addr_mode = absolute implies
EA’post = IR.eff_addr and IP’post = IP + 1)

and (IR.addr_mode = immediate implies
EA’post = IP + 1 and IP’post = IP + 2)

and (IR.addr_mode = indirect implies
EA’post = Word_to_Instr(Memory(IR.eff_addr)).eff_addr
and IP’post = IP + 1)

and (IR.addr_mode = relative implies
EA’post = IP + IR.eff_addr and IP’post = IP + 1)

and Memory’post = Memory and RGST’post = RGST and IR’post = IR

The effective address, EA and instruction pointer, IP, are updated according to the current ad-
dressing mode. The next phase is specified to be the execute phase. The main memory, the CPU

registers and the instruction register are unchanged.

December 14, 1994 29

The Move Machine behavior during the execution phase depends upon the fetched operation. This

part of the specification is determined by the Move Machine operations:

phase = execute implies
(IR.operation = load implies RGST(IR.reg.id)’post = Memory (EA)
and forall(x:Register_Id)
(x /= IR.reg_id implies RGST(x)’post = RGST(x))
and (IR.operation /= load implies RGST’post = RGST)
and (IR.operation = store implies Memory(EA)’post = RGST(IR.reg.id))
and forall(x:Address)(x /= EA implies Memory(x)’post = Memory(x))
and (IR.operation /= store implies Memory’post = Memory)
and (IR.operation = jump implies IP’post = EA)
and (IR.operation /= jump implies IP’post = IP)
and (IR.operation = halt implies phase’post = stop)
and (IR.operation /= halt implies phase’post = fetch))

For a load operation, the register identified by the current instruction is assigned the value of the
memory location referenced by the effective address. This is easily specified by: RGST(IR.reg-id) ’post
= Memory(EA). However, it is also necessary to specify that the remaining registers do not change.
This is the purpose of the second conjunct implied by the load operation. Using the vsPEC forall
construct, it states that every register that is not involved in the load operation retains its value.
When the instruction does not specify a load operation, the values of the register array do not

change.

Similarly, for a store operation, the specification states that the specified memory location changes
while the rest remain unchanged. The jump operation only effects the value of the instruction
pointer. A halt operation causes the next phase to be the stop phase. Any other operation results

‘in the processing returning to the fetch phase.

During the stop phase, the processor sets the finished signal and monitors the clear signal. The

stop phase is specified by:

43

December 14, 1994 30

phase = stop implies Finished’post = ’1’
and (Clear = ’0’ implies phase’post = stop)
and (Clear = ’1’ implies phase’post = start)
and Memory’post = Memory and RGST’post = RGST

and

phase /= stop implies Finished’post = ’0’;

The next phase is determined by the clear signal. This part of the specification also constrains the

finished signal to be low during every other phase.

The full behavior of the Move Machine is modeled by conjuncting the specifications for the indi-

vidual phases. Figure 4 shows the entire specification for the Move Machine.

6 Related Work

VSPEC uses an axiomatic specification technique based on the approach developed for the Larch (7]
family of specification langauges. On the surface, \./SPEC is a prototype Larch interface language
for vEDL. Thus, many of its constructs can also be found in other Larch interface languages, most
specifically LM3 [12], an interface language for Modula-3. Currently, VSPEC is not a true interface
language as its semantics are defined using REFINE rather than the Larch Shared Language (LsL).
However, the general concept of a language specific axiomatic interface language in combination

with a means for writing auxiliary specification is prominent.

Odyssey Research Associates (ORA) is developing a Larch interface language for VEDL [11]. This
language differs from VSPEC because it is targeted for formal analysis of the system rather than
for synthesis. ORA. is attempting to generate a formal semantics for VEDL using LSL for prov-
ing correctness. This approach is adopted from the Ada work previously done in the Penelope
project [4]. In ORA’s interface language, time is the only non-functional constraint directly rep-
resented. Rather than placing constraints on pin-to-pin timing, an absolute time based termporal

logic is used to specify the an entity’s function. One can specify that a predicate P(z) must be true

Uy

December 14, 1994 31

at time ¢ using the notation “P(z)@t”. Thus, a system’s timing constraints are intermingled in the
definition of the function of the system. The VSPEC notation specifies time intervals as constraints
independent of system function. In principle, separation of concerns is a design goal for any spec-
ification language. In practice, including temporal aspects in the functional specification requires
use of theorem provers capable of temporal reasoning. Currently, there are few such production

quality provers. In VSPEC, information needed for constraint verification is included, but one may

choose characteristics for verification.

VAL [1] is another attempt to annotate vEDL. VAL (VHDL Annotation Language is based on
similar work done with Anna for Ada programs [15]. VAL differs from VSPEC because it is an
annotation of a specific VEDL design rather than a representation of the requirements for a system
not yet designed. VSPEC clauses may access only ports defined by the entity and variables
defined locally in the specification. VAL annotations exist throughout the VEDL specification
and férma.]ly document its behavior. Any local variable may be referenced in a VAL annotation.
Specific aspects of both the structural and behavioral implementation are documented in the VAL
annotation. VAL’s intent is to document a design for verification where VSPEC’s intent is to define

requirements for a system.

7 Cufrent Status and Future Directions

Current VSPEC research involves pursuing domain specific support for prototype synthesié. The
role of VSPEC in the COMET system is as a requirements specification language and as input to
synthesis tools. Thus, we are working to develop techniques to transform VSPEC into behavioral
and structural VEDL. An important related technology transfer issue is developing a handbook of
reusable specifications. In the Larch tradition, a handbook is simply a collection of reusable theories
defined in the shared language. Handbook theories represent commonly used structures, algorithms

and characteristics as well as domain specific information. For VEDL theories representing standard

45

December 14, 1994 32

VHDL types, low level logic functions, signal attributes and conversion routines are some libraries
currently being implemented. Theories for pin-to-pin timing, heat dissipation, power consumption,
area and clock speed have been implemented to support constraint checking during the design

process.

We are beginning an effort to make VSPEC a true Larch interface language. Specifically, defining each
of its constructs using LSL and developing tools for manipulating the specifications. Of particular
interest is the representation of parallel components. Each entity structure exists asynchronously
in parallel with other entities in the same design. representing such parallelism in VSPEC is a

current area of research.

A prototype VSPEC parser has been developed and will be used to drive synthesis tools and the
translation from vSPEC to LSL. The parser is developed using the SOPTWARE REFINERY’s DIALECT
tool and parses VEDL93 with VSPEC extensions into an abstract syntax tree. This data structure

serves as the basis for interfacing vSPEC with other tools.

8 Acknowledgments

Support for this work was provided in part by the Advanced Research Projects Agency and moni-
tored by Wright Labs under the RASSP Technology Program, contract number F33615-93-C-13186.

The authors wish to thank Wright Labs and ARPA for their continuing support and direction.

References

[1] L. Augustin, D. Luckham, B. Gennart, Y. Huh, and A. Stanculescu. Hardware Design and
Simulation in VAL/VHDL. Kluwer Academic Publishers, Boston, MA, 1991.

[2] Yoonsik Cheon and Gary T. Leavens. A Quick Overview of Larch/C++. Journal of Object-
Oriented Programming, 7(6):39-49, October 1994.

46

December 14, 1994 33

[3] Stephen J. Garland, John V. Guttag, and James J. Horning. Debugging Larch Shared Lan-

guage Specifications. Technical Report 60, Digital Equipment Corporation Systems Research
Center, 130 Lytton Avenue, Palo Alto, CA 94301, July 1990.

[4] David Guaspari. Penelope, an Ada Verification System. In Proceedings of Tri-Ada ’89, p:ches
~ 216-224, Pittsburgh, PA, October 1989.

[5] David Guaspari, Carla Marceau, and Wolfgang Polak. Formal Verification of Ada Programs.
IEEE Transactions on Software Engineering, 16(9):1058-1075, September 1990.

(6] John V. Guttag and James J. Horning. Introduction to LCL, A Larch/C Interface Language.
 Technical Report 74, Digital Equipment Corporation Systems Research Center, 130 Lytton
Avenue, Palo Alto, CA 94301, July 1991.

[7] John V. Guttag and James J. Horning. Larch: Languages and Tools for Formal Specification.
Springer-Verlag, New York, NY, 1993.

[8] John V. Guttag, James J. Horning, and Andres Modet. Report on the Larch Shared Language:
Version 2.3. Technical Report 58, Digital Equipment Corporation Systems Research Center,
130 Lytton Avenue, Palo Alto, CA 94301, April 19990.

[9] C.A.R. Hoare. Algebra and Models. Proceedings of the First ACM SIGSOFT Symposium on
the Foundations of Software Engineering, 18(5):1-8, December 1993.

[10] Institute of Electrical and Electronics Engineers, Inc., 345 East 47th St., New York, NY 10017.
VHDL Language Reference Manual, 1994.

[11] D. Jamsek and M. Bickford. Formal Verification of VHDL Models. Technical Report RL-TR-
94-3, Rome Laboratory, Griffiss Air Force Base, NY, March 1994.

[12] Kevin D. Jones. LM3: A Larch Interface Language for Modula-3, A Definition and Introduction
Version 1.0. Technical Report 72, Digital Equipment Corporation Systems Research Center,
130 Lytton Avenue, Palo Alto, CA 94301, June 1991.

[13] Knowledge Based Software Engineering Laboratory, University of Cincinnati. VSPEC Lan-
guage Reference Manual, 1994. In Preparation.

[14] Leslie Lamport. A Simple Approach to Specifying Concurrent Systems. Communications of
the ACM, 32(1):32-45, January 1989.

[15] D. Luckham and F. von Henke. An Overview of Anna, a Specification Language for Ada.:
IEEFE Software, 2(2):9-22, March 1985. '

[16] Douglas L. Perry. VADL. McGraw-Hill, Inc., New York, NY, 1991.
[17] Reasoning Systems Inc., Palo Alto, CA. Refine User’s Guide, Version 3.0, May 1990.

(18] Jayanta Roy, Nand Kumar, Rajiv Dutta, and Ranga Vemuri. DSS: A Distributed High-Level
Synthesis System. IEEE DesignéfTest of Computers, pages 18-32, June 1992.

47

December 14, 1994 34

[19] D. Smith. Top-down Synthesis of Divide-and-Conquer Algorithms. Artificial Intelligence,
27(1):43-96, Sept. 1985.

[20] D. Smith. Algorithm Theories and Design Tactics. .S;cience of Computer Programming, 14:305—
321, 1990.

[21] D. Smith. KIDS: A Semiautomatic Program Development System. IEEE Transactions on
Software Engineering, 16(9):1024-1043, Sept. 1990.

[22] R. Vemuri, H. Carter, and P. Alexander. Board and MCM Level Synthesis for Embedded
Systems: The COMET Cosynthesis Environment. In Proceedings of the First Annual RASSP
Conference, pages 124-133, Arlington, VA, August 15-18 1994.

APPENDIX C:

Pipelined Scheduling of Hardware-Software Codesigns *

Karam S. Chatha and Ranga Vemuri
Department of ECECS
University of Cincinnati

Cincinnati, Ohio 45221-0030
Email: ranga.vemuri@uc.edu

Abstract

This paper discusses a scheduling technique for
pipelined hardware-software codesigns. The technique
uses scheduling and retiming to optimize the perfor-
mance of a given codesign. The paper presents heuris-
tics for scheduling and retiming which aim to optimize
the throughput and memory requirements of a given
codesign. The effectiveness of the technique is demon-
strated by experimentation.

1 Introduction

Hardware-Software codesigns are characterized by
strict performance constraints. The codesign process
partitions the system specification in to interacting
hardware (HW) and software (SW) tasks which ex-
hibit the desired behavior and satisfy the performance
requirements. In a typical codesign flow the HW-SW
partitioner and the scheduler execute in an iterative
fashion till a constraint satisfying design is obtained.
Many digital signal processing (DSP) algorithms are
loop oriented, which makes them suitable for pipelined
codesign implementation. In this paper we present a
technique which optimizes the throughput and mem-
ory requirements of pipelined codesigns by scheduling
and retiming.

The system specification is captured in an interme-
diate graph format called the Data Dependency Graph
(DDG). The vertices of the graph represent the tasks
and the edges represent the data dependencies among
the various tasks. The granularity of the tasks is deter-
mined by the user. The execution times of the tasks on
the SW processor and in HW are obtained by profiling
and HW performance estimation respectively [5]; and
are stored in the graph representation. The edges con-

*This work was partially supported by the ARPA RASSP
program and monitored by the Wright Lab, US-AI" under con-
tract number F33615-93-C-1316 and ARPA HPCC program
monitored by the FBI under contract number J-FBI-93-116

tain information about the number of variables across
a dependence. The DDG representation will be dis-
cussed in detail in Section 3.

The codesign architecture consists of a single gen-
eral purpose SW processor, a single application spe-
cific integrated chip (ASIC) and a shared memory
(Figure 1). The SW processor and ASIC are connected
to the shared memory through the system bus. The
general purpose processor and the ASIC themselves
are non-pipelined with respect to task execution, that
is a new task cannot begin execution before the pre-
vious one has finished. Communication between tasks
bound to different resources (that is from SW to HW
or HW to SW) takes place through the shared mem-
ory. Also data transfers between two tasks bound to
ASIC takes place through the shared memory. The
shared memory is ezclusive read ezclusive write and
therefore no two tasks can either read or write at the

same time.
SHARED
MEMORY

FOR SW - SW
COMMUNICATION

SYSTEM BUS

GENERAL
PURPOSE

MICRO
PROCESSOR

SOFTWARE
MEMORY

P

Figure 1: Codesign Architecture

The throughput of loop-oriented codesigns can be
maximized by obtaining a pipelined implementation.
The drawback of pipelining is that it increases the
memory requirement of the design. Consider the DDG
shown in Figure 2. It consists of three tasks shown
as bubbles in the figure. The binding and execution

49

DATA DEPENDENCY GRAPH

sw , 100 t-units

5 10

7
hw, 150 t-units sw, 100 t-units

Memory Read Time = 1 t-units per data item
Memory Write Time = 1 t-units per data item

Figure 2: DDG Example

times of the tasks are shown beside each bubble. The
data dependencies are shown as directed edges and the
data items transferred by each dependency are writ-
ten next to the edges. The memory read and write
times are also shown in the figure. We assume that
the DDG is executed a number of times inside a loop.
The non-pipeline and pipéline implementations of the
design are shown in Figure 3. The rectangles in Figure
3 represent the execution of various tasks. Each rect-
angle contains the task number and iteration number
of the loop to which it belongs. The small rectangles
with “r” and “w” represent memory read and write
respectively. We assume that a task while executing
needs memory space for both its read set and write
set. The read (write) set of a task is the set of data
items read (written) by the task. As can be seen from
the figure the non-pipeline implementation takes 374
t-units to complete one iteration of the loop and it re-
quires 12 memory units. The pipeline implementation
overlaps the execution of tasks belonging to diffcrent
iterations of the loop. When fully loaded the steady
state completes one iteration in 269 t-units, a definite
improvement on the previous design. But it requires
17 memory units for its execution.

The paper presents a technique for optimizing the
performance of pipelined codesign. The technique uses
a list based scheduler [1] and retiming transformations
'[2] to obtain a pipelined codesign. The paper presents
heuristics for both scheduling and retiming which try
to maximize the throughput of the design while trying
to minimize the' memory requirements.

The paper is organized as follows. In Section 2 we
discuss previous work, in Section 3 we describe the
DDG representation, Section 4 presents the pipeline
scheduling technique, the experimental results are in
Section 5 and finally Section 6 concludes the paper.

Non-Pipeiine implementation

Task 2
Hw rfiter. No. 0

Task 1 Task 3
SW [iter. No. 0 fter. No. ©

| 374 t-units
12 memory units

time

Plpeline Implementation

!
Task 2 Task 2
le ritter. No. 0 rliter. No. 1
Task 1 Task 1 Task 3 Task 3
SW [iter. No. 0 [¥|rter. No. 1 f jter. No. 0 7 iter. No. 1
I i | time
Prologus | Steady State | Epilogue
T T 28 tunits |
17 memory units

Figure 3: Non-pipeline and Pipeline Implementation

2 Previous Work

Based on their application area existing codesign
methodologies can be broadly classified in to two cate-
gories. Category one would include methodologies ori-
ented towards real time reactive systems [7](8][11][13].
Scheduling in reactive systems is done to ensure that
time constraints and data dependencies between dif-
ferent processes are satisfied [12]. Category two would
contain methodologies that are meant for data pro-
cessing applications [10]. Design methodologies for
such applications use scheduling to maximize the
throughput of a given codesign partition. Our code-
sign flow would fall into category two. In this paper we
present a scheduling heuristic for optimizing through-
put and memory requirements of a design. Pipelining
is an effective way for maximizing the throughput of
a loop oriented design. Other research [9] has used
pipelining for mixed applications which include both
control constructs and data processing tasks. We use
retiming [2] to generate pipeline designs. The for-
malism for the problem description and the general
technique is described in [3] and we use the same in
our paper. Retiming heuristics in [3] aim at obtaining
pipelined implementations with optimum throughput.
In this paper we present a scheduler interacting with
a retimer to optimize both throughput and memory
requirements of pipelined codesign applications.

3 Data Dependency Graph

The input specification is captured by an intermedi-
ate graph called the Data Dependency Graph (DDG).
It represents the tasks by vertices and the data de-
pendencies between tasks by directed edges. The ver-
tices have information about the task binding (HW or
SW), HW execution time and SW execution time. The

edges have information about the number of variables
in a dependence. Since we are interested in pipelining
the design, we associate with each vertex an iteration
index ()\) and with each edge a dependency distance
() [3]. The iteration index A(u), of a task u indicates
that at the i** iteration of the steady state, instance
of task u belonging to the (i + A(u)) iteration of the
loop is executed. For example consider the pipelined
design in Figure 3. In the first iteration of the steady
state, instance of task 1 belonging to the second itera-
tion of the loop is executed, hence A(taskl) = 1. The
dependence distance of an edge e, d(e) indicates the
number of iterations of the steady state traversed by
that edge. In the pipelined implementation in Figure
3, the data produced by task 1 at the ' iteration of
the steady state is consumed by task 2 at the (i +1)**
iteration of the steady state. Hence the dependence
distance of edge (1,2) is §(1,2) = 1. We now formalize
the DDG representation as follows:

A DDG is a 4-tuple DDG = G(V, E, A, 6), where:

o V is the set of vertices. Each vertezu € V rep-
resents a task. For each task u € V' we have the
following information available to us :

— Uping : The binding of the task, that is
whether its going to be implemented in HW
or SW.

— Uyy : The SW runtime of the task for a
particular input data on the general purpose
pProcessor.

— upyw : The HW runtime of the task if it were
to be implemented as an ASIC for the same
input data.

e E is the set of directed edges. Eache = (u,v) € E
represents a data dependence between tasks u and
v. Every edge has information about the number
of variables (eyqr) represented by the dependence.

e)\ and § are two mappings, A : V = IN and
§ : E = IN, representing the iteration indez ()\)
and the number of iterations traversed by the de-
pendence (§). IN is the set of natural numbers.

Initially, Vu € V, A(u) = 0. Notice that the repre-
sentation has no control flow constructs; it is strictly
data flow. Now we explain and formalize terms and
expressions that we will use in the rest of the paper.

The latency of a task u, L., is the total execution
time of the task. It is the sum of the task’s read time,
execution time on the particular resource that its been
bound to and write time. The read (write) time of a
task is the product of the number of variables read

-50

(written) by the task and the memory read (write)
time. Since we have only two resources, the execution
time for a task on a resource is u,y (if uping = sw) or
Upyw (if Uping = hw).

For a particular pipeline implementation, the ini-
tiation interval II, is the time taken for one itera-
tion of the steady state. For example in Figure 3,
the pipelined implementation has II = 269 t-units.
Given a DDG and an architecture its possible to es-
tablish a lower bound on the initiation interval. This
is called the minimum initiation interval, MII. The
MIT is limited by two factors. Firstly the archi-
tecture resources limit the MII. This is called the
resource constrained MII, ResMII. For example
the DDG in Figure 2 requires at least 212 t-units
to execute tasks 1 and 3 which are bound to SW.
The SW resource constrained MII, ResMIIsw is
given by the sum of latencies of all tasks bound to
SW implementation. Similarly, HW resource con-
strained MII, ResMIIgw is the sum of latencies of
all tasks bound to HW implementation. ResMII for
the DDG is then the maximum of the two, that is
ResMII = maz(ResMIIsw,ResMIIgw) Secondly,
recurrences or cycles in the DDG also limit M II. This
is called the recurrence constrained MII, RecMII.
For example consider the DDG example shown in Fig-
ure 2. Let us assume that we add an extra dependency
e = (2,1) with §(2,1) = 1 to the DDG. In such a case
the pipelined implementation in Figure 3 becomes in-
valid. This is because the instance of task 1 belonging
to the second iteration cannot start executing before
the the instance of task 2 belonging to the first itera-
tion of the loop. This constraint is introduced because
of the recurrence present in the DDG. The RecM I,
for a recurrence r, is given by the ratio of the sum
of the latencies of the tasks in the recurrence to the
sum of the weights (6) of all the dependencies in a re-
currence. A graph may have more than one cycle, and
RecM1I is then the maximum of the RecM II, due to
each one of them, that is RecMII = maz(RecMIl,),
for all the recurrences r in the DDG. The MII is
then the maximum of ResMII and RecMII, that
is MII = maz(ResMII,RecMII). The maximum
execution throughput of a DDG, MazTh is the max-
imum iterations of the steady state possible in one
time unit. Its given by:

1
MaxTh = m

4 Pipeline Scheduling Technique

The objective of the technique is to obtain a
pipeline schedule of the the DDG which has MII as

51

its initiation interval and which requires least amount
of shared memory. The pipeline schedule of the DDG
determines the steady state of the pipeline. The flow
diagram of the technique is shown in Figure 4. The
inputs to the pipeline scheduler are the partitioned
DDG, the codesign architecture and a desired upper
bound on initiation interval, MazII. The pipeline
scheduler first calculates the MII for the design. It
.then tries to schedule the DDG in MII time. If its
unsuccessful it selects a dependency to be retimed.
Retiming as we will see later transforms a schedule
constraining dependency into a free scheduling depen-
dency which does not constrain the scheduler. In this
process however, it increases the iteration indices of
some tasks. Hence retiming produces a DDG with
tasks belonging to different iterations of the steady
state. In other words retiming produces a pipelined |
DDG. ‘This inner loop of scheduling and retiming
continues till a successful schedule is found or all the
dependencies have been retimed. In the latter case
we increase the initiation interval and try scheduling
again. We set the increment factor to the maximum
of the following two values: one time unit or one per-
cent of MII. We exit the outer loop when the initia-
tion interval I becomes greater than the user specified
Mazll.

The inputs to the scheduler are the DDG and the
expected initiation interval II. The objective of the
scheduler is to obtain a pipeline schedule of the DDG
in IT time using the least amount of shared memory.
The schedule is an assignment, of start times to tasks,
S(u), such that for all tasks » in the graph 0 < S(u) <
IT [3]. For a dependency e = (u,v), the schedule
time of u and v must honor the data dependence, ie
S(v) +8(u,v) x IT > S(u)+ Ly = S(v) 2 S(u)+ Ly~
6(u,v) x II." Also there should be enough resources
and shared memory to execute a task scheduled at a
particular time instance. The memory requirement of
a task during execution is the total memory required
by the variables in the task’s read set and write set.
The pipeline schedule of a task is then formalized as
below:

For a given II, a pipeline schedule of DDG =
G(V,E, \,0) is an integer labeling, S — IN which ful-
fills the following conditions :

e VueV,0< S(u) <II
e Y(u,v) € E,S(w) > S(u) + L, = II - 6(u,v), that
is all dependences must be honored.

o There are sufficient resources (HW and SW) to
ezecute the task scheduled at a particular time in-
stant. '

—
—— -
——— -
~——

Calculate Ml
Setlt = MIl

'

Schedule DDG
in il Time

Selecta
Dependency to

|

PIPELINE SCHEDULER |
[
1
|
I
!
i
i
1
1
|
|
|
|
1
1
Retime }
|
|
|
|
|
|
!
1
|
|
|
|
{
i
1
1
|

Retime

(]
Dependency’
Found 2
No

Increase It

. No
@
Yes

[
Unabie to Schedule Output Succesful
In tess than Maxll Time Schedule, Throughput
Rate and Memory
Requirements

Figure 4: Pipeline Scheduling Technique

o There is sufficient memory to ezecute the task
scheduled at a particular time instant.

Schedule Constraining Dependencies. For a
given initiation interval II, the data dependencies
in a DDG can be classified in to positive scheduling
dependencies (PSDs), negative scheduling dependen-
cies (NSDs) or free scheduling dependencies (FSDs)
[3]. A dependency (u,v) is a PSD if Ly — II -
8(u,v) > 0. A dependency is a FSD or NSD if
Ly —II-6(u,v) < 0. PSDs constrain scheduling since
they make S(v) > S(u), in other words task v must
be scheduled later than task u. FSDs do not con-
strain scheduling. NSDs could constrain a schedule
if pipelined resources are used or if an iteration of the
steady state begins before the previous one finishes
(non-rectangular schedule). Since neither of the two
conditions are true in our case, NSDs do not con-
strain the schedule. The set of schedule constraining
dependencies E¥ is then given by:

ES = {(u,v) € E|Ly — IT - §(u,v) > 0}

52

PSDs are also called intra loop dependencies (or
ILDs) and FSDs and NSDs are together called as
loop carried dependencies (or LCDs). A dependency
(u,v) is a ILD if §(u,v) = 0 and it is a LCD if
d(u,v) > 0.

Given a set of schedule dependencies we can define
two properties for every task. The first one called the
height of the task, H(u) gives the as soon as possible
(ASAP) schedule time of a task. The second one called
the depth of a task, D(u) is a measure of the “urgency”
of the task to be scheduled. It is given by:

D(u) = Ly, if there doesn’t ezist a (u,v) € ES
T | maxeeps (D) + Ly — II-6(e)), otherwise

where ¢ = (u,v). For an initiation interval I,
(II-D(u)) gives the as late as possible (ALAP) sched-
ule time of the task. Both these quantities can be
calculated by a breadth first search of the DDG.

A path p = {e1,...,e,} is called a positive path, if
Ve € p, e is a PSD. The Length of p is:

Length(p) = Ly + Z (Lu = IT - 6(u,v)),

(u,v)€p

where L,, is the latency of the tail task in the positive
path. For a task that is the head node of a positive
path the above expression gives the depth of the task.
A mazimal positive path, M PP of a DDG, is a positive
path p such that, for any other positive path p' C E,
Length(p) > Length(p'). The M PP for a DDG is
then given by:

MPP = maz(D(u)),Vu €V

For a feasible schedule of a DDG with initiation in-
terval I1,
MPP<LII.

Calculation of Memory Requirement Now let
us consider the memory requirements of a pipeline
schedule. We assume that the memory is reserved for
the write set of a task as soon as it begins execution,
and it remains reserved until the task which uses the
data finishes execution. In other words, memory is
reserved for some data as soon as the producer task
begins execution and it is freed once the consumer task
finishes execution. In a pipeline schedule the memory
requirement is due to /LDs and LCDs. ILDs do not
cross the boundary between two consecutive iterations
of the steady state. All the data belonging to any ILD
is produced and consumed within one iteration of the
steady state. LCDs cross the boundary between two

iterations of the steady state. Depending on the dis-
tance (or §) they might cross more than one boundary.
Hence before an iteration of the staedy state can begin
execution there is already some memory occupied by
the LCD data which is given by :

Memrcp = Z evar X 0(e)
eeLCD

Memypcp is the same at the beginning of each it-
eration of the steady state. Hence we need at least
Mempcp memory for the pipeline design. The mem-
ory required during one iteration of the steady state
is the maximum amount of memory occupied by the
data items during execution, Mem.z... This memory
is both due to ILDs and LC Ds. The memory require-
ment of a pipelined design, MemReq is then given by:

MemReq = max(Memrcp, Memezec)

In the next section we discuss the list based schedul-
ing algorithm.

4.1 List Based Scheduler

We use a list based scheduler for scheduling the
DDG on the codesign architecture. The scheduler
maintains three ready lists, one each for HW, SW and
memory resource. The execution of a task can be di-
vided in to three states. When a task is selected to
be scheduled from either HW or SW ready list, it first
goes in to read state. When the task has finished read-
ing it goes in to run state and then in write state when
its writing data to the shared memory. A task in the
read and write states could cause a memory conflict
with another task. The scheduler resolves conflicts by
maintaining a ready list for the memory resource. A
task is added to HW or SW ready list when all its
predecessor tasks have been scheduled. When a task
is selected to be scheduled on a particular resource,
its goes into read state and is added to the memory
ready list. A task on completion of its read opera-
tion runs on the appropriate resource and gets added
to the memory ready list again when it goes into its
write state.

The scheduler uses the same heuristic priority func-
tion to select a task from the three ready lists. The
priority of a task to be selected depends on the follow-
ing four properties in descending order :

1. 0-Mobility: The mobility of a task is given by the
difference between its ALAP and ASAP times.
The ASAP time may change during scheduling
and its updated. The ALAP time of a task is
constant for a given initiation interval. If a task
has 0-Mobility then it must be scheduled at that

53

time. Otherwise the timing constraints will be
violated.

2. Mobility: A task with lesser mobility is selected to
be scheduled before a task with greater mobility.
It is a well established heuristic which is known
to produce good results.

3. Difference between number of read and write vari-
ables (or data items): The memory requirement
of a schedule is given by the maximum memory
occupied by the data items during one iteration
of the steady state. A task which reads more vari-
ables than it writes would reduce the number of
variables present in the memory. Hence it should
be scheduled near its ASAP time. Alternatively
a task which writes more variables than it reads
should be scheduled near its ALAP time.

4. Number of Successors: A list scheduling algo-
rithm performs better when it has more choice
in the ready list. Hence a task whose completion
adds more tasks to the ready list is selected.

A task with O-mobility is always selected from the
ready list. If no task has 0-mobility we use property
2 to select a task, and properties 3 and 4 (in that
order) to break ties. In the next section we present
the retiming heuristic.

4.2 Retiming Heuristic

Retiming increases the distance of a dependence
and produces an equivalent DDG which satisfies the
following condition:
Two graphs, DDG = G(V,E,\,§) and DDG' =
G(V,E,X,8) are equivalent if, V(u,v) € E, the fol-
lowing equation holds,

A(w) = A(u) + 8(u,v) = XN (v) = X (u) + & (u,v)

We do retiming when we are unable to schedule a
DDQG in the given initiation interval, II. A successful
schedule for a DDG can be obtained by decreasing the
number of dependencies that constrain the schedule.
By retiming we can transform a PSD into a FSD
or NSD. The drawback of retiming is that it in-
creases the memory requirement of the schedule. We
can minimize this increase by using good heuristics
. to select the dependency to be retimed. But this is
not enough. In order to produce an equivalent DDG
other dependencies might need to be retimed. The
increase in memory requirement due to these depen-
dencies should also be minimized. During retiming we
do not increase the distance of a dependence belonging
to a recurrence. Also we ensure that no dependency
has § < 0.

We do retiming in two steps. In the first step
we heuristically select a dependency to be retimed.
Increasing the distance of a dependence necessitates
changing the A and § of other tasks and dependencies.
In a DDG there might exist a number of sets of depen-
dencies whose distance could be increased to obtain an
equivalent retimed DDG. In step 2 we select the set
of dependencies which on retiming result in the least
increase in memory requirement. As a first step to-
wards retiming we select a dependency to be retimed.
The priority of a dependency to be retimed depends
on its following four properties in decreasing order:

1. Dependency is a PSD: The primary objective
of retiming is to reduce scheduling constraints in
the DDG; and give the scheduler greater freedom
in scheduling tasks on the resources. Only PSDs
constrain scheduling and therefore only PSDs are
retimed.

2. Dependency between tasks bound to heteroge-
neous resources: Increasing the distance of a de-
pendency between tasks mapped to the same re-
source does not necessarily help the scheduler.
Basically the two tasks have to be scheduled on
the same resource and will be scheduled one af-

"ter the other. On the other hand retiming a
dependency between tasks mapped to different
resources definitely gives more freedom to the
scheduler.

3. Dependency whose predecessor task has a greater
sum of height and depth (H(u)+ D(u)): The sum
of height (H (u)) and depth (D(u)) of a task gives
the length of the positive path to which it belongs.
Increasing the distance of a dependency whose
predecessor task has a greater sum (H (u) + D(u))
reduces the length of a longer positive path in the
DDG.

4. Dependency representing the least number of
variables transferred: A secondary objective of re-
timing transformation is to minimize the increase
in memory requirement of the DDG. Hence we

. select a dependency representing fewer variables
being transferred. ’

We use property 1 to select dependencies to be re-
timed, and use properties 2 , 3 and 4 (in that order)
to break ties. Given a dependency e = (u,v) to be
retimed we define the following four sets with respect
to u:

V. = { connected component to which u belongs }

" Figure 5: P, S and R sets during retiming of depen-

dency (u,v)

P = {v € V,|there is a path from v to u } U {u}
S = {v € V,|there is a path from w to v }
R=V.-{PUS}

Figure 5 gives an illustration of the four sets. We
can retime the dependency e = (u,v) by the following
three equations.

Mu) = AMu) +1

8(u,z) = 6(u,z) + 1,Vz € V such that (u,z) € E
§(z,u) = §(z,u) — 1,Vz € V such that (z,u) € E

Application of the three equations would result in an
equivalent DDG. However the third equation de-
creases the distance of some dependencies. This can
be avoided by increasing the X of all tasks which are in
P and increasing the ¢ of all dependencies whose pre-
decessor task is in the set P and successor is in RUS.
This is the cutset cI in Figure 5. Another way to re-
time is to increase the A of all tasks in the set PUR and
increasing the & of all dependencies whose predecessor
is in PU R and successor is in S. This is the cutset ¢2
in Figure 5. However its possible that neither cutset
¢l nor ¢2 give us a minimum increase in memory. We
could obtain another cutset c3 (see Figure 5) by par-
titioning the set R into P and S, so that the memory

54

cor e FOCT ‘
N,

16 data-items

QUANTIZATION ‘

16 data-items

ZIG-ZAG °

16 data-items

HUFFMAN ENCODING & RLE °

Figure 6: DDG for JPEG like Compression Algorithm

increase is minimized. We use a simulated annealing
based partitioner. The cost function being minimized
is defined as follows. For a cut ¢; = {e1,€2,...,€n},
the cutsize cost is given by :

Cost = Z var(e;)

=1

var(e;) is the number of variables across the depen-
dency e;. In the above cost function the sum gives us
the extra memory required by the LCDs after retim-
ing. After partitioning R into P and S, we do retiming
using the following two equations:

VYu € P, A(u) = A(u) +1
V(u,v) € E,u € P,v € P,6(u,v) =6(u,v) +1

5 Experimental Results

We demonstrate the effectiveness of the tool in
codesign flow by considering the design of a JPEG
[4] like compression algorithm. The DDG of the spec-
ification is shown in Figure 6. It consists of four tasks,
Forward Discrete Cosine Transform (FDCT), Quanti-
zation, Zig-Zag and RLE and Huffman encoding. All
the dependencies have § = 0 and the number of vari-
ables transfered across each dependency is 16. The
memory read time is 16 ns and the memory write time
is 24 ns respectively. The run times of the various
tasks in SW and HW is shown in Table 1 [6]. Ta-
ble 2 shows the comparison between throughput and

55

Number Non-Pipeline Pipeline Speed-up | Memory
No. | of Tasks | Depth | Time (ns) | Memory | MII (ns) | II (ns) | Memory (%) Incr. (%)
1 3 1 110 8 90 90 16 18 100
2 3 2 390 7 240 290 14 34.5 100
3 5 3 230 17 190 190 34 17.4 100
4 6 3 1410 30 1135 1170 75 17 150
5 8 5 750 170 600 600 190 20 11.7
- 6 8 7 890 10 730 730 20 18 100
7 8 7 740 10 425 470 20 36 100
8 8 7 890 5 465 580 20 35 300
9 10 4 1130 15 842 931 30 17.6 100
10 10 6 390 34 300 300 43 23 26
11 15 7 950 76 770 770 97 18.9 27.6
12 15 12 1290 52 860 860 66 33.3 26.9
13 20 7 1200 129 870 870 182 27.5 41
14 20 14 1150 96 1010 1010 104 12.2 8.3
15 50 6 6320 534 5640 5640 794 10.8 48.6

Table 3: Comparison between Non-Pipeline and Pipeline Implementations for Random Graphs

2, 4, 7, 8 and 9) we were not able to obtain pipeline
schedules with MII as their initiation interval. This is
because of the memory conflicts during scheduling and
recurrences in the graph. Memory conflicts force the
scheduler to defer a read or a write operation thereby
increasing II. Dependencies belonging to recurrences
are not retimed, hence they constrain the scheduler
leading to an increase in II. The increase in memory
requirement of a pipeline schedule is due to the extra
memory that is required to store data items between
two iterations of the steady state. It is quite com-
mon for the increase to be in the region of 100 to 300
percent. Speed-up due to pipelining was achieved for
all graphs. For some graphs (rows 5, 10, 11, 12 and
13) a good speed-up was achieved with a low memory
increment, thereby making them ideal candidates for
pipelined implementation.

6 Conclusion

In this paper we have presented a pipeline schedul-
ing technique for optimizing the throughput and mem-
ory requirements of HW-SW codesigns. The effec-
tiveness of the technique was demonstrated by exper-
imentation. This technique will be an integral part
‘of a larger codesign tool now under development. Fu-
ture work will involve extension of the technique to
include general multiple ASIC architectures with dif-
~ ferent communication protocols.

References ,

[1] D.D. Gajski, N. Dutt, A. C-H Wu, S. Y-L
lin, High-Level Synthesis: Introduction to Chip
and System Design, Kluwer Academic Publishers,
1992. : :

C.E. Leiserson and J.B. Saxe, “Retiming Syn-
chronous Circuitry,” Algorithmica, Vol. 6, No. 1,
pp- 5-35, 1991.

(2l

F. Sanchez, Loop Pipelining With Resource And
Timing Constraints, Ph.D. Dissertation, UPC
Universitat Politeéchnica de Catalunya, Barcelona,
Spain, October 1995.

8]

W.B. Pennebaker and J.L.Mitchell, JPEG: Still
Image Data Compression Standard, Van Nostrand
Reinhold, 1993.

Y

N. Narasimhan, V. Srinivasan, M. Vootukuru, J.
Walrath, S. Govindrajan, and R. Vemuri, “Rapid
Prototyping of Reconfigurable Coprocessors”, Pro-
ceedings of the 1996 International Conferences
on Application-Specific Systems, Architectures and
Processors, IEEE press, August 1996.

5]

J. Walrath, K. S. Chatha, R. Vemuri, N.
Narasimhan and V. Srinivasan, “Performance
Modeling and Tradeoff Analysis During Rapid

(6]

56

Prototyping”, Proceedings of the 1996 Interna-

. tional Conferences on Application-Specific Sys-
tems, Architectures and Processors, IEEE press,
August 1996.

[7] R.K. Gupta and Giovanni De Micheli, “Hardware-
Software Cosynthesis for Digital Systems”, IFEE
Design and Test of Computers, pp. 29-41, Septem-
ber 1993.

[8] R. Ernst, J. Henkel and T. Benner, “Hardware-
Software Cosynthesis for Microcontrollers”, IEEE
Design and Test of Computers, pp. 64-75, Decem-
ber 1993. :

[9] T.Benner and R. Ernst, “A combined Partitioning
and Scheduling Algorithm for heterogeneous Mul-
tiprocessor Systems”, Technical Report C'Y-96-2,
Institute of Computer Engineering, Technical Uni-
versity of Braunschweig, Germany.

[10] D.E. Thomas, J.K. Adams amd H. Schmit, “A
Model and Methodology for Hardware-Software
Codesign”, IEEE Design and Test of Computers,
pp. 6-15, September 1993.

[11] P.H. Chou, R.B. Ortega and G. Borriello, “The
Chinook Hardware/Software Co-Synthesis Sys-
tem”, Proceedings of 1SSS-95, Cannes, France,
September 13-15, 1995.

[12] P.Chou, E.A. Walkup and G. Borriello, “Schedul-
ing for Reactive Real-Time Systems”, IEEE Micro,
pp 37-47, August 1994.

[13] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L.
Lavagno, K. Suzuki, S. Yee and A. Sangiovanni-
Vincentelli, “Hardware-Software Codesign of Em-
bedded Systems”, IEEE Micro, pp 26-36, August
1994.

57

APPENDIX D :.
RECOD: A Retiming Heuristic To Optimize

Resource And Memory Utilization In
HW /SW Codesigns*

Karam S Chatha'and Ranga Vemurit

Laboratory for Digital Design Environments
Department of ECECS
P.O. Box 210030
University of Cincinnati
Cincinnati, OH 45221-0030

SLIGHTLY REVISED VERSION OF THE PAPER ORIGINALLY ACCEPTED AT
EuroDAc-97 (PAPER CoODE D130).
THIS PAPER TAKES THE REVIEWERS COMMENTS IN TO ACCOUNT.

DATE-98 Toric 2 :HW/SW CODESIGN

All appropriate clearances for the publication of this paper have been obtained, and if accepted the authors
will prepare the final manuscript in time for inclusion in the Conference Proceedings and will present the
paper at the Conference.

- (Karam S Chatha)

*This work was partially supported by the ARPA RASSP program and monitored by the Wright Lab, US-AF under
contract number F33615-93-C-1316.

tDesignated presenter, should the paper be accepted

t Author for Correspondence,(513)-556-4784 (Voice), (513)-556-7326 (FAX), Ranga. Vemuri@UC.EDU

~58

RECOD: A Retiming Heuristic To Optimize Resource And Mémory
Utilization In HW /SW Codesigns

Abstract

Hardware/Software designs of embedded systems are characterized by stringent performance constraints.
Pipelined implementation of a design is an effective way for mazimizing the performance of a design. In
this paper we present a retiming heuristic to obtain pipelined schedules for hardware-software codesigns.
The heuristic aims at mazimizing the throughput of a resource constrained codesign while minimizing its
memory usage. The effectiveness of the proposed technigque is demonstrated by ezperimentation.

59

TASK GRAPH
sw, 100 t-units

hw, 75 t-units sw, 100 t-units

hw , 125 t-units
NON-~PIPELINED DESIGN - PIPELINED DESIGN

! . | L Loy

- time ime
sw | 11]31 12032 sw |11][31]1.2]32]13]33].......
ow [21140 [22[s2] hw | R[4t [2242 J23] [an |

[[{

| |
resources | resources ; : } I

| : ISTEADY| | |

§ PROLOGUE ' STATE! | !EPILOGUE

.! "

40 data items 70 data items

Figure 2: Non-Pipelined and Pipelined Implementations of a Task Graph

the task. The memory requirement of the implementation is the maximum memory used by one iteration
of the loop (shown by the dotted line in the figure). This happens when tasks 2 and 3 execute in parallel.
Task 2 needs memory for 20 data items and task 3 needs memory for 10 data items. Also at this point
in time the variables transferred from task 1 to task 4 (10 data items) are also stored in the memory.
Hence the maximum memory used by the implementation is for 40 data items. Now consider a pipelined
implementation of the same task graph (lower right corner of the figure). A pipeline execution of a design
can be divided into 3 parts. The first part which loads the pipeline is called the prologue. The second part
is the steady state which is executed a several times. Finally the last part which down loads the pipeline is
called the epilogue. As shown in the figure the execution of task 4 belonging to the first iteration of the loop
is overlapped with execution of task 1 belonging to the second iteration. Once fully loaded the steady state
completes one iteration of the loop every 200 t-units. A definite improvement over the previous design.
The drawback is that the memory requirement has increased to 70 data items (shown by the dotted arrow
line).

We implement pipelined designs by using retiming transformation. Retiming to generate pipelined design
is considered a generalization [3] of the classical transformation introduced by Leiserson and Saxe [10]. A
similar problem is the software pipelining problem [9] in code generation for VLIW architectures. Given a
task graph to be pipelined it can generally be retimed in more than one way. We need to select a retiming
that gives us the least increase in memory requirements. In this paper we present a Retiming heuristic for
optimal resource and memory utilization in HW/SW Codesigns (RECOD).

In this paper we concentrate on the design of DSP applications. DSP applications have moderately simple
algorithms and they demand high performance and throughput; thus necessitating search for efficient and

60

inexpensive implementations [13]. Besides many of these applications are loop oriented where a single
block of code is executed a number of times on different set of data, thereby making them ideal candidates
for pipelined implementation.

In this paper we assume that the SW processor and the ASIC in the codesign architecture are themselves
non-pipelined with respect to task execution. We also assume that the pipeline schedule is rectangular
in nature, that is a new iteration of the steady state does not begin before the previous one is over. In
a non-rectangular schedule the execution of a task belonging to one iteration of the steady state overlaps
with the execution of a task belonging to the next iteration.

The paper is organized as follows. In Section 2 we discuss previous work, in Section 3 we describe the
graph representation and pipeline schedule, Section 4 presents RECOD, experimental results are in Section
5 and finally Section 6 concludes the paper.

2 Previous Work

The term “Retiming” was introduced by Leiserson and Saxe [10] when they used it to solve the problem of
optimizing the throughput of synchronous circuitry. Retiming was used to describe the re-distribution of
register delays between combinational blocks in a synchronous circuit. They developed an ILP formulation
to solve the problem. Since then retiming transformation has been used extensively in logic synthesis [11],
high level synthesis [15] [17], HW-SW codesign [18] and DSP applications [7] [8]. Pipelining is considered a
generalization of the retiming problem in which circuit latency is allowed to increase by allowing a change
in the production and consumption times of output and input signals respectively [3].

The term “Software Pipelining” was introduced by M. Lam [9]. She used it to describe a loop scheduling
technique for code generation of VLIW processors. In software pipelining multiple iterations of the loop
in various stage of their execution are in progress simultaneously. This description relates it very closely
to pipelining in hardware systems. Since then a number of heuristic [1] [6] and ILP formulations [4] [12]
have been proposed to solve the software pipelining problem. [16] gives a good comparison and survey of
the techniques. [2] establishes a link between circuit retiming and software pipelining.

The work that comes closest to the paper is that of Sinchez presented in [17]. In that work, Sdnchez
has used a retiming heuristic in a high level synthesis tool that aims at obtaining pipelined designs with
optimum throughput. The retiming heuristic retimes the head or tail dependency of the maximum positive
path in a graph. In this paper we present a new retiming heuristic which optimizes both throughput and
memory requirements of pipelined codesign applications. Our heuristic does retiming in two steps. In the
first step it selects a dependency to be retimed which gives the maximum freedom to the scheduler. In the
second step it selects the other dependencies (in addition to the first one) which on retiming result in an
equivalent graph with the least increase in shared memory requirements. Experimental results show that
our retiming strategy produces designs which use significantly lesser memory and operate at the optimum

throughput rate.

61
3 - Graph Representation and Pipeline Scheduling

Graph Representation The input specification is captured by an intermediate graph format called the
Data Dependency Graph (DDG). It represents the tasks by vertices and the data dependencies between
tasks by directed edges. The vertices have information about the task binding (HW or SW), HW run
time and SW run time. The edges have information about the number of variables in a dependence.
Since we are interested in pipelining the design, we associate with each vertex an iteration index (A) and
with each edge a dependency distance (). The iteration index of a task u, A(u) indicates that at the
ith iteration of the steady state, instance of task u belonging to the (¢ + A(u)) iteration of the loop is
executed. For example consider the pipelined design in Figure 2. In the first iteration of the steady state, -
instance of task 2 belonging to the second iteration of the loop is executed, hence A(task2) = 1. Similarly
A(taskl) = 1, A(task3) = 1 and A(task4) = 0. The dependence distance of an edge e, d(e) indicates the
distance of the dependence. In Figure 2 the data produced by task 1 at the i** iteration of the steady
state is consumed by task 4 at the (i + 1)* iteration of the steady state. Hence the dependence distance
of edge (1,4) is §(1,4) = 1. Similarly §(1,2) =0,6(1,3) =0,6(2,4) =1 and 6(3,4) = 1. We now formalize
the DDG representation as follows: ’
A DDG is a 4-tuple DDG = G(V, E, A, d), where :

e V is the set of vertices. Each vertez u € V represents a task. For each task u € V we have the

following information available to us :

— Uping : The binding of the iask, that is whether its going to be implemented in HW or SW.
— Ugy : The SW runtime of the task for a particular input data on the general purpose processor.

— Upw : The HW runtime of the task if it were to be implemented as an ASIC for the same input
data.

e E is the set of directed edges. Each e = (u,v) € E represents a data dependence between tasks u and
v. Every edge has information about the number of variables (eyqr) represented by the dependence.

e)\ and § are two mappings, A\: V — IN and & : E — IN, representing the iteration indez (\) and the
number of iterations traversed by the dependence (8), also called dependence distance. IN .is the set
of natural numbers. '

Initially, Vu € V, A(u) = 0. Notice that the representation has no control flow constructs; it is strictly
data flow.

Theoretical Upper Bound on Throughput Given a DDG there exists a theoretical upper bound on
the throughput of a pipeline schedule of the graph [17]. It is called the mazimum ezecution throughput
(MazTh) and it gives the maximum number of iterations of the steady state in one time unit. The reciprocal
of MazTh is called the minimum initiation interval (MII). For a particular pipeline implementation the
initiation interval, II, is the time taken for one iteration of the steady state. For example in Figure 3, the

62

pipelined implementation has IT = 200 t-units. The M I is limited by two factors. Firstly the number of
resources (HW or SW) limit MII. This is called the resource constrained MII, ResMII. Consider again the
example shown in Figure 2. The task graph has two tasks 1 and 3 bound to SW. Hence we need at least
200 t-units to complete the execution of task 1 and 3. Similarly we need at least 200 t-units to complete
execution of tasks 2 and 4 in HW. The ResMII; due to a resource ¢ is given by the ratio of the sum of
the latencies of all the tasks executing on the resource 7 by the total number of instances of resource ¢ [17].
The latency of a task u, Ly, is the total execution time of the task. It is the sum of the task’s read time,
execution time on the particular resource that its been bound to and write time. The read (write) time of
a task is the product of the number of variables read (written) by the task and the memory read (write)
time. Hence we have,

Usw f Uping = SW

Ly = Ui + Urdtime + Uwrtime where, u; = {)
Upw 4f Ubind = hw

Since the codesign architecture has only one HW and one SW resource, we can calculate ResMIIgw
and ResMIIgw as the sum of latencies of all tasks bound to HW and SW respectively. ResMII for a
DDG is the maximum of all the ResMII;, therefore we have ResMII = maz(ResMIIyw, ResMIIgw).
Secondly recurrences or cycles in a task graph also limit MII. This is called the recurrence constrained
MII, RecMII. Let us assume that in Figure 2, the data produced by task 4 in it iteration of the loop
is consumed by task 1 in the (i + 1)®* iteration, that is let us add an edge e = (4,1) with §(4,1) = 1 to
the task graph. In such a case the schedule shown in the figure becomes invalid. This is because now we
cannot overlap the execution of task 1 and task 4. Infact any schedule of the graph now takes at least 325
t-units. The RecMII, for a recurrence r, is given by the ratio of the sum of the latencies of the tasks in
the recurrence to the sum of the weights () of all the dependencies in a recurrence [17]. A graph may
have more than one cycle, and RecMII is then the maximum of the RecMII, due to each one of them,
that is RecMII = maz(RecMII,), for all the recurrences r in the DDG. The MII is then the maximum
of ResMII and RecMII. That is,

1

= MII II Th =
MII = max(Res ,RecMII) = MazTh (max(Res M 1T, Becld 1))

‘Pipeline Schedule The pipeline schedule of a task graph is characterized by its initiation interval
II. The schedule is an assignment of start times to tasks, S(u), such that for all tasks u in the graph
0 < S(u) < (II-1). For a dependency (u,v), the schedule time of u and v must honor the data dependence,
that is

S(v) + 6(u,v) - II > S(u) + Ly, = S(v) > S(u) + Ly — 6(u,v) - IT

As we will see in the next paragraph not all dependencies constrain a pipeline schedule. The dependencies
which do not constrain a schedule can be ignored during scheduling. We obtain a pipeline schedule by
scheduling [5] and retiming in an iterative manner as shown in Figure 3. We calculate the MIJ, and try
scheduling the DDG for MII. However due to constraining dependencies we may not be able to schedule
the DDG in MII. If we can’t we retime the DDG and try again. The objective of retiming is to reduce

the number of schedule constraining dependencies.

OUTPUT SUCCESSFUL
SCHEDULE

Figure 3: Pipeline Scheduling by Iterative Retiming

Schedule Constraining Dependencies Depending on whether d(u,v) is equal or greater than zero
a data dependency (u,v) may or may not constrain a pipeline schedule. A dependency with 6(u,v) = 0
constrains a pipeline schedule. This is because now S(v) > S(u) + L, is strictly positive. Essentially a
data depéndence with 6(u,v) = 0 implies that the data produced by the predecessor task u is consumed
by the successor task v in the same iteration of the steady state and hence it constrains the schedule.
Such a dependency is called a positive scheduling dependency (PSD) [17] or intra loop dependency (ILD).
A dependency (u,v) with §(u,v) > 0 gives us two cases. First consider a dependency dependency with
8(u,v) > 0'and L, — IT - §(u,v) < —(IT —1). Such a dependency does not constrain a pipeline schedule
since for all values of S(u) and S(v) the data dependence is satisfied, that is

If 6(u,v) >0 and L, — IT - §(u,v) < —(II — 1) then,

S(v) > S(u) + Ly, — d(u,v) - II,VS(u),S(v) € [0, II).

Such a dependency is called a free scheduling dependency (FSD) [17]. Now consider a dependency with
8(u,v) > 0 and —(JI — 1) < L, — IT - §(u,v) < 0. Such a dependency is called a negative scheduling
dependency (NSD) [17] and it will constrain a pipeline schedule under two conditions. Firstly if the pipeline
schedule is non-rectangular then the NSDs would constrain the schedule. Secondly if the resources on
which tasks u and v are executing are themselves pipelined then N.SDs would constrain the schedule. Since
neither of these two conditions are true in our case NSDs do not constrain the pipeline schedule. FSDs
and NSDs together are called loop carried dependencies (LCDs) since they represent a data dependence
between tasks executing in different iterations of the steady state. Hence for a given initiation interval I, -
the set of schedule constraining dependencies, E° is set of PSDs in the DDG, that is '

E¥ = {(u,v) € E|6(u,v) = 0}

64

The initiation interval IT of a pipeline schedule is constrained by the length of the mazimum positive path
(MPP) in the DDG. A path p = {es,...,e,} is called a positive path, if Ve € p, e is a schedule constraining
dependency. The Length of p is:

Length(p) = L+ Y (L),

(u,v)ep
where L,, is the latency of the tail task in the positive path. A mazimal positive path, M PP of a DDG,
is a positive path p such that, for any other positive path p’ C E, Length(p) > Length(p'). For a feasible
schedule of a DDG with initiation interval IT,

Length(MPP) < II.

Hence during retiming we should try to reduce the number of schedule constraining dependencies which to a
longer positive path. Before we present the retiming algorithm in the next section, we discuss the memory
requirements of a pipeline schedule in the following paragraph.

Calculation of Memory Requirement We assume that the memory is reserved for the write set of
a task as soon as it begins execution, and it remains reserved until the task which uses the data finishes
execution. In other words, memory is reserved for some data as soon as the producer task begins execution
and it is freed once the consumer task finishes execution. In a pipeline schedule the memory requirement
is due to ILDs (PSDs) and LCDs (FSDs and NSDs). ILDs do not cross the boundary between two
consecutive iterations of the stea&y state. All the data belonging to any ILD is produced and consumed
within one iteration of the steady state. LCDs cross the boundary between two iterations of the steady
state. Depending on the distance (or §) they might cross more than one boundary. Hence before an
iteration of the steady state can begin execution there is already some memory occupied by the LCD data
which is given by :

Memch = Z €yar X (5(6)
eeLCD

Mempcp is the same at the beginning of each iteration of the steady state. Hence we need at least
Memcp memory for the pipeline design. The memory required during one iteration of the steady state
is the maximum amount of memory occupied by the data items during execution, Memeze.. This memory
is both due to ILDs and LCDs. The memory requirement of a pipelined design, MemReq is then given
by: ‘

MemReq = max(Mempcp, Memezec)

As we see by the above discussion Mempcp is a lower bound on the memory requirement of a pipeline
schedule. During retiming we convert a schedule constraining dependency (ILD) in to 2 LCD which does
not constrain the schedule, thereby increasing Mempcp. Therefore during retiming we should try to reduce

the increase in Mempcp.

Each task in the DDG is bound to a unique resource. Hence ResM I is an achievable lower bound. In other
words we should be able to schedule the DDG in MII time when the binding is known (and RecMII <

165

ResMII). The general case where binding is unknown increases the complexity of the scheduler. However,
the retiming heuristic should work equally well in the general case.

4 RECOD: Retiming Heuristic for HW /SW Codesigns

We do retiming when we are unable to schedule a DDG in the given initiation interval, II. A successful
schedule for a DDG can be obtained by decreasing the number of dependencies that constrain the schedule.
By retiming we can transform a PSD into a FSD or NSD (LCDs) by increasing the dependence distance
(6). LCDs do not constrain an iteration of the loop. During retiming we ensure that no dependency
has § < 0. Also retiming should produce an equivalent DDG. Two graphs, DDG = G(V, E, \,d) and
DDG' = G(V,E, X,{') are equivalent if, V(u,v) € E, the following equation holds,

M) = A(u) +6(u,v) = X (v) = N (u) + & (u,v)

Retiming produces a DDG with tasks belonging to different iterations. In other words dependence retiming
helps in pipelining a DDG.

The drawback of retiming is that it increases the memory requirement of the schedule. Since we now
have tasks belonging to different iterations executing at the same time, we need more shared memory to
store data between successive iterations of the steady state. We can minimize this increase by using good
heuristics to select the dependency to be retimed. But this is not enough. In order to produce an equivalent
DDG other depehdencies might need to be retimed. The increase in shared memory requirement due to
these dependencies should also be minimized. Hence RECOD does retiming in two steps.' In the first step
it heuristically selects a dependency to be retimed. Increasing the distance of a dependence necessitates
changing the A and § of other tasks and dependencies. Decreasing the § of a dependence is likely to change
it in to a PSD. Hence during retiming we only increase the distance of the dependencies. In a DDG there
might exist a number of sets of dependencies whose distance could be increased to obtain an equivalent
retimed DDG. In step 2 we select the set of dependencies which on retiming result in the least increase in
shared memory requirement.

The distance of a dependency belonging to a recurrence in the DDG cannot be increased without de-
creasing the distance of any other dependency. Hence during retiming we do not increase the distance
of a dependence belonging to a recurrence. A dependence not belonging to a recurrence can however be
retimed without decreasing the distance of another dependence.

4.1 RECOD Step 1: Heuristic To Select A Dependency For Retiming Transformation

As a first step towards retiming we select a dependency to be retimed. The priority of a dependency to be
retimed depends on its following four properties in decreasing order:

66

. Dependency is a PSD.

The primary objective of RECOD is to reduce scheduling constraints in the DDG; and give the
scheduler greater freedom in scheduling tasks on the resources. Only PSDs constrain scheduling.
Hence the dependency to be retimed should be a PSD, and not a NSD or FSD.

. Dependency between tasks bound to heterogeneous resources.

As mentioned above the main objective of the retiming heuristic is reduce scheduling constraints in
the graph. Increasing the distance of a dependency between tasks mapped to the same resource does
not necessarily help the scheduler. Basically the two tasks have to be scheduled on the same resource
and will be scheduled one after the other. On the other hand retiming a dependency between tasks
mapped to different resources definitely gives more freedom to the scheduler.

. Dependency whose predecessor task belongs to a longer positive path.

As discussed in the previous section the positive paths limit the IT of a pipeline schedule. Increasing
the distance of a dependency whose predecessor task belongs to a longer positive path helps in
obtaining a pipeline schedule with smaller II and therefore higher throughput.

. Dependency representing the least number of variables transferred.

A secondary objective of retiming transformation is to minimize the increase in memory requirement
of the DDG. Increasing the distance of a dependency with more variables definitely results in a larger
increase in memory requirement. Hence we select a dependency representing fewer variables being

transferred.

We use property 1 to select dependencies to be retimed, and use properties 2 , 3 and 4 (in that order) to
break ties.

4.2 RECOD Step 2: Partifioning To Minimize Increase In Memory Requirement

During Retiming

The primary objective of retiming is to give the scheduler greater freedom. This is achieved by the
heuristic described above. We now select the set of dependencies which give us the least increase in
memory requirement. Given a dependency e = (u,v) to be retimed we define the following four sets with

respect to u:

V. = {connected component to which u belongs }
P = {v € V,|there is a path from v to u } U {u}
S = {v € V,|there is a path from u to v }
R=V,—-{PUS}

Figure 4 gives an illustration of the four sets. We can retime the dependency e = (u,v) by the following

three equations.

Au) = Alu) +1

67

e ——————— e em e CUT C1

- -]
¢—'— /”’ b T
-~ i —— T e e e Y = e U €3
g ps 'd] ~
- - Vi 277N
’ - / N \

Figure 4: P, S and R sets during retiming of dependency (,v)

o(u,z) = §(u,z) + 1,Vz € V such that (u,z) € F
§(z,u) = 6(z,u) — 1,Yz € V such that (z,u) € E

Application of the three equations would result in an equivalent DDG. However the third equation decreases
the distance of some dependencies. This can be avoided by increasing the A of all tasks which are in P, that
is Vu € P, A(u) = A(u) +1. Now to obtain an equivalent DDG we need to increase the § of all dependencies
whose predecessor task is in the set P, but successor isn’t, that is V(u,v) € E,u € P,v &€ P,6(u,v) =
8(u,v) + 1. This is the cutset ¢l in Figure 4. Another way to retime without decreasing the of any
dependence is as follows, Vu € {PUR}, A(u) = A(u) +1 and V(u,v) € E,u & S,v € S,4(u,v) = §(u,v) +1.
This is the cutset ¢2 in Figure 4. However it is possible that neither cutset ¢l nor c2 might give us a
minimum increase in memory. We could obtain another cutset c3 (see Figure 4) by partitioning the set R
into P and S, so that the memory increase is minimized. We use a sémulated annealing based partitioner.
The cost function being minimized is defined as follows. For a cut ¢; = {ey, ea,... ,en}, the cutsize cost is
given by : n'
Cost = Zvar(ej)

j=1
var(e;) is the number of variables across the dependency e;. In the above cost function the sum gives us
the extra memory required by the LCDs after retiming. During partitioning we ensure that if a task u is
in partition P (S) then all its predecessors (successors) are also in partition P (§). After partitioning set

10

63

Algorithm RECOD: Retimes the DDG
Input : DDG
Output : Retimed DDG with less number of PSDs
Begin
DDGro_scc = removescc(DDG)
edgeu,v) = heuristic_select(DDGro_sce)
if (edge(u,yy = 0) then return(D DG failure)
V. = {connected component to which u belongs}
S = {v € V.|there is a path from u to v}
P = {v € V.|there is a path from v to u} U {u}
R=V.-{SUP}
partition(R,P,S)
for eachz € V,
if (z € P) then \(z) = A(z) + 1 endif
endfor
for each (z,y) € E.
if (z € P AND y € S) then §(z,y) = 8(z,y) + 1 endif
endfor
copy-changes(DDGro_sce, DDG)
return(DDG,success)

end

Figure 5: RECOD: Algorithm

R in to sets P and S we do retiming using the following two equations:
Vu € P,A(u) = Mu) +1

V(u,v) € E,u € P,v € P,6(u,v) = 6(u,v) +1

4.3 RECOD: Algorithm

The algorithm to do retiming transformation is shown in figure 5. A brief explanation of the functions used
in the algorithm are as follows. The function remove_scc() replaces every strongly connected component,
sce; (or recurrence) in the DDG with a single task usc;. It returns a new graph DDGro_scc- All the
dependencies that are part of a recurrence scc; are not present in DDGro_sce- All the dependencies that
are “to” and “from” any task in the scc; are now from the single task wuge;. We use DDGp_scc for
retiming. By removing all the scc tasks and dependencies we ensure that no dependency belonging to a
recurrence is retimed; although the X of all the tasks belonging to a recurrence might be increased. The
changes are reflected in the original DDG by the function copy-changes(). The function heuristic_select()
heuristically selects a dependency to be retimed (see section 5.1). The function partition() as the name

11

:69

16 data-items

QUANTIZATION

16 data-items

2G-ZAG

16 data~items

Figure 6: DDG for JPEG like Compression Algorithm

HUFFMAN ENCODING & RLE

id. Task SW time(ns) | HW time(ns)
1 FDCT 371300 8400

2 Quant. 7560 600

3 ZigZag 1630 400

4 RLE & Huff. 18480 884000

Table 1: SW and HW run times for various JPEG tasks

suggests partitions R between P and S (see section 5.2). The two for-loops do the retiming. The first one
increases the A of all tasks u € P. The second one increases the § of all dependencies (u,v),u € P,v € S.

5 Experimental Results

To demonstrate the effectiveness of the retiming heuristic in HW/SW codesign, we consider the design of
a JPEG [14] like compression algorithm. The DDG of the specification is shown in Figure 6. It consists
of four tasks, Forward Discrete Cosine Transform (FDCT), Quantization, Zig-Zag and RLE and Huffman
encoding. All the dependencies have § =.0 and the number of variables transfered across each dependency
is 16. The respective run times of the various tasks in SW and HW is shown in Table 1 {19]. Table 2
shows the estimated throughput and memory requirements for various bindings of the tasks. Columns
two to five give the bindings of the tasks. The sixth and seventh columns have the run time and memory
requirement of the non-pipeline design of the application. The eighth column gives the MII of the pipeline
implementation. Columns nine and ten give the achieved IT and the memory requirement of the pipeline
implementation. The speed-up and increase in memory requirement due to pipeline implementation are in
columns eleven and twelve respectively. In the table we have exhaustively bound all the tasks to SW and
HW. Since we have four tasks, we have sixteen rows in the graph. The results show that we were always
able to schedule the DDG in MIT time. We can achieve a speed-up of upto 1.6 (row 15). The maximum

12

70

[6] R.A. Huff, “Lifetime Sensitive Modulo Scheduling”, Proceedings of the 93 SIGPLAN conference on Programming Language Design
and Implementation, pp 258-267, June 1993.

[7] S. Huang and J. Rabaey, “Maximizing the Throughput of High Performance DSP Applications using Behavioral Transformations”,
Proceedings of EDAC-ETC-EUROASIC 94, pp 25-40, March 1994.

[8] L. Jeng and L. Chen, “Rate-Optimal static scheduling for recursive DSP algorithms by retiming and unfolding”, International Journal
of Electronics, 1992, Vol. 73, No. 4, pp 687-701.

[9] M. Lam, “Software Pipelining: An effective scheduling technique for VLIW Machines”, ACM SI GPLAN, 1988.
{10] C. E. Leiserson and J. B. Saxe, “Retiming Synchronous Circuitry”, Algorithmica, vol. 6, no. 1, pp. 5-35, 1991.

[11] S. Malik, K.J. Singh, R.K. Brayton and A. Sangiovanni-Vincentelli, * Performance Optimization of Pipelined Logic Circuits Using
Peripheral Retiming and Resynthesis”; IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol 12,
No. 5, May 1993.

[12] Q. Ning and G.R. Gao, “A Nove! framework of Register Allocation for Software Pipelining” , Conference Record 20t% Annual ACM
SIGPLAN-SIGACT symposium on Principles of Programming Languages, pp 29-42, Jan 10-13, 1993.

[13] N. Narasimhan, V. Srinivasan, M. Vootukuru, J. Walrath, S. Govindrajan, and R. Vemuri, “Rapid Prototyping of Reconfigurable
Coprocessors”, Proceedings of the 1996 International Conferences on Application-Specific Systems, Architectures and Processors,
IEEE press, August 1996.

[14] W.B. Pennebaker and J.L.Mitchell, “JPEG: Still Image Data Compression Standard”, Van Nostrand Reinhold, 1993.

[15] M. Potkonjak and J. Rabaey, “Optimizing Resource Utilization Using Transformations”, IEEE Trensactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol 13. No. 3, March 1994.

[16] J. Ruttenberg, G.R. Gao, A. Stoutchinin and W. Lichtenstein, “Software Pipelining Showdown: Optimal vs. Heuristic Methods in
a Production Compiler”, ACM SIGPLAN NOTICES, May 1996.

[17] F. Sénchez, “Loop Pipelining With Resource And Timing Constraints”, Ph.D. Dissertation, UPC Universitat Politéchnica de
Catalunya, Barcelona, Spain, October 1995.

[18] M. Sheliga, N.L. Passos and E.H. Sha, “Fully Parallel Hardware/Software Codesign For Multi-Dimensional DSP Applications”,
Proceedings of 4t" International Workshop on Hardware/Software Co-Design (Codes/CASHE ’96), March 1996.

[19] J. Walrath, Karam S. Chatha, R. Vemuri, N. Narasimhan and V. Srinivasan, “Performance Modeling and Tradeoff Analysis During
Rapid Prototyping”, Proccedings of the 1996 International Conferences on Application-Specific Systems, Architectures and Processors,
IEEE press, August 1996.

15

/1

APPENDTX E:

Hardware/Software CoSynthesis: Multiple Constraint Satisfaction and
Component Retrieval’

R. Miller H. Carter K. Davis'
Electronic Design Automation Research Center
University of Cincinnati
Cincinnati, OH 45221-0030

{rmiller, hcarter, kcd}Rece.uc.edu

Abstract

Hardwarelsoftware CoSynthesis is a complex
process that involves transforming a high-level system
specification to an implemented hardwarelsoftware
system that meets the specification constraints. One
phase of the CoSynthesis process is described here:
partitioning the specification into components ard
binding them to hardwarelsoftware resources.
Partitioning requires an effective means to explore the
design space; challenges include (1) supporting
constraint-driven retrieval and (2) evaluating candidate
solutions considering the interaction of multiple
constraints. The CoSynthesis Tool described here
assigns scores to candidate solutions using multiple
design constraints, but rather than the simple sum
approach predominant in CoSynthesis research, it uses a
vector of rank data that does not require that equal
weight be given to all criteria. Qur results to date show
that not only can we can process a scaleable, selectable
set of design constraints, but when compared with a 2
constraint Fidducia-Matheyses (FM) approach, we
achieve better results. The flexible component retrieval
is accomplished using our database system; the database
is unique for three reasons: (1) it uses a hardware
description language as the basis for its conceptual
model, (2) it allows flexible, ad hoc querying over
designs, and (3) it uses a fine granularity of component
modeling to enable detailed search conditions required by
the CoSynthesis Tool. ‘

1. Introduction

Hardware/software CoDesign and CoSynthesis
can be characterized as a binding problem: binding
components from a database to functional specifications
in order to create a hardware/software system that carries
out the desired functionality and meets performance

S. Venkatesan
Intel Corporation
RN4-40, 2200 Mission Clg. Blvd.
Santa Clara, CA 95052

satish@scdt.intel.com

constraints. The CoDesign methodology used in our
research is embodied in the hardware/software CoDesign
and CoSynthesis project called COMET [Vem94]. The
general goal of COMET is to transform high level
system specifications into application specific electronic
signal processing modules using a hardware/software
CoSynthesis process and to produce working hardware
within a two week time period. HW/SW
CoDesign/CoSynthesis is assumed to be the requisite
approach for reducing the development cycle [Gaj94]
and time to market. Current time to market for a
complex HW/SW system is approximately 18 months
[Keu94].

An abstract representation of the major
COMET system components is given in Figure 1. A
user supplies a system specification that is divided into
modules, matched to component specifications, and then
allocated to either hardware or software synthesis
processes. The CoSynthesis process is iterative;
alternate bindings are used to satisfy constraints such as
performance and area requirements. The CoSynthesis
Tool issues requests to the design database using
qualifications on design properties, and the query
processor determines the set of design objects that
subsume the request. In other words, a query is a
module description, and any modules in the database
that have at least the desired functionality (possibly
additional functionality) are returned. The CoSynthesis
Tool analyzes candidate solutions and determines the
best assignment of resources to hardware and software
using an iterative binding algorithm. The hardware and
software specifications are processed by hardware and
software synthesis tools, then integrated to form a
system that satisfies the initial specifications. The end
result of these transformations is an application specific

hardware design that can be fabricated along with the

embedded software that will be executed on the
manufactured hardware. The shaded portion of Figure 1

* Partially supported by NSF Grant IR1-9210200 and ARPA's RASSP Technology Program, contract F 33615-93-C-1316.
! Author for correspondence. Phone: (513) 556-2214. Fax: (513) 556-7326

/2

highlights the subsystems described in this paper, the
CoSynthesis Tool and the design database.

Figure 1. Application Environment.

2. The CoSynthesis Tool

The goal of the HW/SW CoSynthesis tool is
to allocate hardware and software resources for the
modules given in a high-level system specification.
Input to the CoSynthesis Tool specifies the system
functionality and performance constraints levied on the
system by the designer. They can specify (but are not
limited to) the final design's size, weight, power
consumption, heat dissipation, and speed. The output
of the CoSynthesis tool consists of bindings of
modules to resources. The resources come from a pre-
defined component database. It is the interplay of their
attributes (size, weight, power, etc.) with particular
bindings of resources to actions that determines how
well the final design meets the performance constraints
[Mil95]. In this paper, our preliminary implementation
produces a VHDL configuration body as output.
VHDL uses configuration bodies to specify bindings
between components within a design and their
implementation in a VHDL library of components.
Extensions to this research have the goal of producing a
configuration body and an updated architecture reflecting
hardware and software resource allocations.

The relationship of our CoSynthesis algorithm
and algorithms used for traditional hardware partitioning
is described in Section 2.1. Our algorithm is proposed
in Section 2.2.

2.1 Related Work

Iterative technmiques such as Simulated
Annealing (SA). Kemighan-Lin (KL). Fiduccia-
Mattheyses (FM), and Genetic Algorithms (GA) are

commonly used in hardware partitioning [She94] and
have been in use for a decade or more [Bha%4].
Hardware partitioning provides a means for breaking a
system design up into smaller, more manageable pieces
based primarily on the number of communication
channels between the pieces. Hardware partitioning is
not limited to one level of design abstraction or even
application area. It can be used to facilitate design
packaging [Bha94], design layout [Bha94], simulation
and test [Cha94], Rapid Prototyping [Cha94], and logic
minimization [Con94].

Given an initial partitioning of a system into
two halves, iterative techniques move one circuit
component (node), or pairs of nodes, between the
partitions in an effort to minimize a single constraint or
a pair of constraints. At the core of these algorithms is
the manner in which they select the "best node” within
the system graph to move between partitions. These
techniques are a natural extension for HW/SW
CoSynthesis and are the core iterative technique of
many CoDesign or CoSynthesis approaches [Ben93]
[Car96] [Gaj94] [Gup93] [Hen96] [Yeh95].

In the HW/SW CoSynthesis context, the
hardware partitions become software and hardware
partitions respectively. The movement of system nodes
between the two is accomplished by rebinding the
node's physical implementation from hardware to
software or vice-versa. = However, while cutset
minimization remains a meaningful design constraint,
area balancing does not. Further, one of the COMET
project's goals is to facilitate additional design
constraints in the CoSynthesis process. The iterative
improvement algorithms are limited by their ability to
readily add additional design constraints due to their
manner of selecting the "best node”" to move between
partitions.

The two most common hardware partitioning
algorithms differ in how they select the "best node” to
move. The Fidducia-Matheyses method (FM) [She94]
for hardware partitioning starts from an initial
partitioning of the system graph. It proceeds by rank
ordering all the tasks in the graph based on how moving
a task from one chip to the other impacts the overall
interchip communication (cutset). Next, the rank
ordered list is stepped through and the algorithm selects
the first task from the list that reduces the cutset and
does not violate a predetermined size balance (usually
set at 40-60%) between the two chips. This task is then
moved to the other partiion and the ranked list is
updated. This process repeats until all tasks have been
moved. The history of all task moves is examined to
find the point in the process where the cutset is
minimized.

/3

The Ratio Cut method [Wei91] [Cha94]
evaluates the tasks based on the following equation

Cun
CMI:Z:’EAZKA,C,} RM’=M>_:TIZ/-I5

where A and A’ are the two hardware partitions and C is
the cutset between the partitions. This equation takes
into account the number of communication lines and
the relative sizes of the two partitions. Once all the
tasks have been evaluated, the task with the smallest
value, R, is selected for movement.

The FM method may be extended for
additional constraints, but either each constraint must be
expressed as a range or the task ranking must be based
on an equation that incorporates the results of the
constraint evaluations as a simple sum. The first
method is imprecise; the second mixes incomparable
attributes. The Ratio Cut method suffers from the same
restrictions.

Our algorithm improves on the iterative
improvement technique by selecting the “best node™ for
rebinding rather than the first node that is acceptable, as
well as allowing additional constraints to be added easily
to the evaluation process. Our work is primarily
influenced by techniques from hardware partitioning, but
we have taken an approach similar to that of the
DESTINATION project [Mar96] for assigning tasks to
processors in complex computer systems. They
consider multiple constraints with user-defined weights
combined into a single objective function, similar to
our approach.

2.2 CoSynthesis Algorithm

The new algorithm, called SCOREBOARD,
has its roots in the FM method. Our algorithm
maintains separate, rank-ordered lists for each node that
may be rebound for each constraint specified by the
system specification. [Each constraint specifies the
scalar value of one dimension of a ranking vector for
that node. The “best node” to move is selected by
choosing the node with the smallest vectar from the set
of possible candidates to rebind. After preliminary
system definitions in Sections 2.2.1 and 2.2.2, the
algorithm is described in Section 2.2.3.

2.2.1 Component Database

During CoSynthesis, all nodes from the
system are bound to a specific implementation from a
database or library of hardware and software
components. The component library, L, consists of
components, }j k, where:

j specifies the class or functionality of the library
component, and
k specifies the particular implementation for the
component.
Using VHDL as the design language, VHDL
entity/architecture pairs represent the j's and k's.
Additionally, for each 1j k component there exists a set
of performance attributes, pj, and a set of functions, fj.
Sample pi's include size, cost, weight, and area.
Further, for a given j, all ljk components implement
the same function, fj. The task of the CoSynthesis
Tool is to bind components from the library to nodes
within the system such that the functions (fj) of a
bound component (lj k) match those of the node in the
system, and the aggregate system performance attributes
satisfy the system-level constraints levied by the
designer. The data model and flexible retrieval
mechanism are further described in Section 3.

2.2.2 System Definition
The input to the HW/SW CoSynthesis tool,
Sin. is defined as a triple (G, C, B), where:
G is a dataflow hypergraph, denoted (V, E) where
V is the set of all nodes, vj, of the graph G,
E is the set of all edges, denoted as {(vj, K},
where K is a subset of V.

C 1is a set of performance constraints, cj, that
specify S's performance constraints. (Sample ¢j
are area, weight, power consumption, and time
delay.)

B is a binding set in which a binding, denoted (vj,
1jx). associates one vi € V to one and only one
ijk € L. Initially, B can be either the empty set
or a user-specified set of bindings.

Output from the HW/SW CoSynthesis tool, Sgyt. is
defined similarly to Sin. The output system is a triple,
(G, A, B), where G and B are defined as above and
A s aset of system performance attributes. Each
aj € A is calculated by a specific constraint
analyzer in the SCOREBOARD tool and is
based either on the performance attributes, pj,
associated with components of the binding set,
B, and their satisfaction of the set of
performance constraints, C € Sip.
Associated with the constraints of the input system, C,
and the attributes of the output system, A, is a
constraint satisfaction function X(cj, aj). This function
determines whether or not the attribute aj of the output
system achieves the desired goal set by the inputci. An

74

example is area; X(cj, aj) compares the output system'’s
area (a simple sum of the area of the bound
components) with the designer's input area constraint.
The goal of HW/SW CoSynthesis is then ~ °
Given: Sip = (G, Cg, B), where B is initially either
the empty set or a user-specified set of bindings.
Create: Sout in which
Vi vi€ V, 3 a binding (vi, lj k) of vi toa
specific lj k € L such that
Vi cj € of C, and a;j € A, the constraint
satisfaction function X(cj, a;) is satisfied.

2.2.3 Algorithm

Our approach improves on the iterative partitioning
technique by incorporating a three step evaluation
process for selecting the "best node” to move based on
user supplied constraints. Prior to algorithm execution,
the nodes of the system are initially bound to an
implementation (hardware or software) from the
component library. All nodes in the graph are
unlocked. The algorithm, outlined in Figure 2, proceeds
as follows. Each constraint maintains a separate rank
ordered list. During the first step, denoted by [1] in
Figure 2, system nodes are imserted into each
constraint's ordered list based on the impact of the
node's potential movement (rebinding) on the overall
system. From the context of the node's score in these
ordered lists, constraint ranks are assigned to the nodes
during step [2]; these constraint ranks are the scalar
values for the node's rebinding vector. Finally, in step
[3], the rebinding vectors for the nodes are examined and
the node with the shortest vector (Euclidean norm) is
selected for rebinding. The node is bound to the
alternate implementation and locked, and the three steps
are repeated until no further node rebindings are
possible.

While (ULTasks # ¢) {
FOR EACH(CA) {
[1} CA->Score (ULTasks) ;
(2] CA->Rank (ULTasks) ; }
{31 Task2Rebind = SVector (ULTasks);
Rebind(Task2Rebind);
LTasks = LTasks U Task2Rebind;

ULTasks = ULTasks - Task2Rebind;)

Where ULTasks = Unlocked Tasks
CA = Constraint Analyzer
LTasks = Locked Tasks
Svector = ShortestVector routine

Figure 2. SCOREBOARD Algorithm.

The components under consideration for
rebinding are initially retrieved from the database using
the constraints as part of a criteria-based search (a
query). Traditionally, each VHDL-based tool must
contain its own parser and mechanism for searching
VHDL design units. OQOur approach is to use a design
database and query language facilities rather than
incorporating this functionality in each tool within the
COMET environment.

3. The Design Database

Many of the tools in the COMET
environment, such as tools for partitioning, synthesis,
and performance estimation, as well as in industrial
design environments, are VHDL-based. The general
goals of our design database are (1) that it should
"understand" VHDL, and (2) allow flexible retrieval of
components specified in VADL. We accomplish these
goals by defining a conceptual data model that is
implemented in our database system Odyssey [Ven95]
[Ven96a]. VHDL can be used as input or obtained as
output from the database, in addition to accessing data
through other interfaces. We define a general query
language that provides an interactive, stand-alone
interface, or can be used by tools to retrieve designs. In
this way, we can interface with existing tools and
additionally allow greater flexibility for browsing and
retrieving components from design libraries. Users of
the database gain query and view facilities as well as
more flexible storage management than with traditional
file-based VHDL environments.

Others have developed specialized databases for
VLSI CAD [Sie89][Kim90][Nay91][Wag92), however,
our research is the first that we are aware of to use a
bardware description language as a database description
language. Wagner examines some of the issues in using
HDLs for database description [Wag95], but models
designs at a coarser granularity. Modeling at a finer
level of granularity permits queries on information
regarding entity ports that may be of prime interest in
the CoSynthesis process. For example, numerical
accuracy may be an additional constraint imposed by the
system specification; during system CoSynthesis,
tradeoffs can be made to achieve a particular system
numerical accuracy based on the bus widths of the
components used in the system.

Our approach to design data modeling and
retrieval is to parse and store VHDL source using our
conceptual model. The components can be directly
accessed through a query interface, either by designers or
tools. The instances can also be restored to VHDL so
that legacy tools may access designs placed in the
database regardless of their source.

75

V.=00{+10j |[V|=1.0
V,=0.583 +0.0j [V,|=0.583

V; =1.0i +0.866] [V;|=1.322

For this example, the reverser has the smallest
rebinding vector and is the best candidate to rebind for
this iteration of the algorithm. It is rebound and locked
(eliminating it from consideration in the future).
Finally, new system attribute values are calculated
(Figure 8) and the algorithm repeats until all nodes have
been rebound.

Cost Area
Splitter w 1 1
Reverse sw 2 10
Compare HW 10 10

23 16

Figure 8. System Attributes after Rebinding.

If the system constraints have not been met, the best
solution achieved by the algorithm can be used as the
initial bindings and the algorithm re-executed.

5. Results and Analysis

An object-oriented experimental
SCOREBOARD system has been prototyped using
C++ that accepts a VHDL entity/architecture pair and a
constraint description. The VHDL input describes the
system as a netlist of instantiated components while the
constraint description indicates which constraint
analyzers and goals to include in the SCOREBOARD
algorithm. Although instantiated components are a
subset of the possible VHDL language constructs that
can be used to model systems, our approach is
extensible to allow us to model any concurrent VHDL
task (processes, blocks, concurrent signal assignments,
procedure calls, etc.). Currently six primitive
coastraints are supported: cutset minimization, cutset
maximum value, area minimization, area maximum
value, cost minimization, and cost maximum value.
The "minimization" constraint analyzers attempt to
minimize their particular system attribute; the
"maximum value" analyzers attempt to minimize a
system attribute until 8 maximum possible value is
achieved. Inheritance from a common constraint
analyzer base class facilitates the creation and
manipulation of additional analyzers within the
SCOREBOARD system. The output is a revised
VHDL architecture dividing the system into hardware
and software components and a VHDL configuration

body binding the instantiated components to library
elements. Experimental data has shown this algorithm
produces better two-constraint designs than existing
iterative improvement methods. Further the algorithm'’s
complexity is similar to existing hardware partitioning
techniques [She94], namely O(n?), where n is the
number of nodes in the system.

The following two examples depict the
attributes of a synthesized system as the
SCOREBOARD algorithm iterates to completion.
Each example was generated from the same input
system, an ISCAS 85 benchmark [ISC85], consisting
of 1350 nodes. In the first example, the
SCOREBOARD algorithm had three goals: minimize
the system cutset, minimize the system area, and
balance the respective sizes of the HW and SW
partitions. In practice, the third goal is of little value in
a HW/SW CoSynthesis environment. It is included
here to depict a 3-constraint example and as a further
indication of the capability of the algorithm over other
partitioning methods. The first two constraints, cutset
and area minimization, are plotted in Figure 9. The x-
axis shows a history of the iterative rebindings for
cutset and area. Each step along the x-axis is ome
iteration of the algorithm. If the constraints of interest
are cutset and area, then the optimal point is
approximately around 700. Figure 10 shows the
history of rebindings with respect to area balance
between hardware and software as well as total area.
Although this consideration is artificial in CoSynthesis, -
it does demonstrate how a third constraint can easily be
accommodated in our approach. The balance constraint,
as a percentage of each partition's contribution to the
whole, is in Figure 10.

i s8x10’

g8Ra
wy

nuw

Figure 10. SCOREBOARD Area Balance.

In the second example, a fourth constraint, cost
minimization, was added to the analysis of the same

/6

system to illustrate the algorithm's scalability. This
constraint adds another dimension to the rebinding
vector. Results are presented in Figure 11, Figure 12,
and Figure 13. It is apparent by examining minimum
values achieved for cutset and area balance in example 2
that a rebinding that was appropriate in the first
example is no longer suitable in the second when the
additional constraint is considered.

x10'

8 8¢ 8

Figure 11. SCOREBOARD Cutset and Area.

17.510°

e svm e, m":;:,'
e ol

Figure 13. SCOREBOARD Area Balance.

6. Conclusions and Future Work

Conclusions and issues for future work are
discussed below.

6.1 Conclusions

The CoSynthesis Tool analyzes candidate
solutions and determines the best assignment of
resources to hardware and software using an iterative
binding algorithm. Our algorithm maintains separate,
rank-ordered constraint lists of system nodes that may
be tebound for each constraint in the system
specification. Qur CoSynthesis tool improves on
hardware partitioning techniques by selecting the best
node for rebinding based on its rebinding vector rather
than the first node that is acceptable and allowing
additional constraints to be added easily to the
evaluation process.

We have proposed and implemented a data
model that stores designs described in VHDL aod

interfaces with legacy tools (VHDL as file input/output)
and new state-of-the-art EDA tools (e.g.. CoDesign and
CoSynthesis tools) to allow design space exploration
via criteria-based searching. The contribution is that
tools do not have to be scanners, parsers, and query
evaluators; designers and tools can continue to work
with a widely-used modeling language, and reap the
benefits of flexible retrieval.

6.2 Future Work

Future research will cover a broad range of
both SCOREBOARD and database refinements. Near-
term efforts will formally define and characterize the
SCOREBOARD algorithm and an analysis of the
quality of the synthesized design. This includes the
evaluation of more realistic constraint analyzers and
their impact both om the design process and the
algorithm. Allowing user-defined constraint weighting
to the scalar values of the rebinding vector is an
interesting capability. Additionally, the output format
will be refined such that the output will include a
revised VHDL architecthire containing instantiated
components representing the hardware and software
partitions. The software partitions would be represented
as instantiated CPUs and memory executing the
software.

Further research could address the granularity of
HW/SW CoSynthesis by treating sequential statements
of VHDL processes as individual nodes. Designs that
define a system's functionality at a more abstract,
algorithmic level are not supported in the current
version of the algorithm’s implementation. Finally,
scheduling and resource sharing would greatly aid the
HW/SW CoSynthesis effort in that duplicate tasks
would not be replicated in the system design.

Areas for future database research include
investigation of query optimization and data integration.
Data sharing is facilitated since different
producers/consumers of design data can use the common
database. Data exchange and integration can also be
facilitated for other EDA data formats and languages.
We have investigated interchange issues for VHDL and
the CAD Framework Initiative Design Representation
model [Ven96b]. Formats such as SDF [SDF95] for
timing delay information pose additional challenges in
this area [Dav96].

7. References.

[Ben93] T. Benner, R. Ernst, and J. Henkel. "“Hardware-
Software Cosynthesis for Microcontrollers,” IEEE Design
and Test, Vol. 10, No. 4, December 1993.

[Bha%4] D. Bhatia, Physical Design Automation Course
Notes. University of Cincinnati, 1994,

/7

{Car96] C. Carreras, J. Lopez, M. Lopez, C. Delgado-
Kloos, N. Martinez, and L. Sanchez. "A Co-Design
Methodology Based on Formal Specification and High-
level Estimation,” Fourth International Workshop on
HardwarelSoftware CoDesign, p.28.

[Cha94] P. K. Chan, M. Schalg, and J. Y. Zien. "Spectral
K-Way Ratio-Cut Partitioning and Clustering,” IEEE
Trans. On Computer-Aided Design, Vol. 13, No. 9,
September 1994, pp. 1088-1095.

{Con%4] 7. Cong, Z. Li, and R. Bagrodia. "Acyclic Multi-
Way Partitioning of Boolean Networks,” Proceedings of
the 31st ACMIIEEE Design Automation Conference, pp.
670-675.

[Dav96] K.C. Davis, S. Venkatesan, and L.ML.
Delcambre, "Sharing Electronic Design Data Via Semantic
Spaces,” submitted, 1996.

[Gaj94] D. Gajski, F. Vahid, S. Narayan, and J. Gong,
Specification and Design of Embedded Systems, Prentice-
Hall, Inc, Englewood Cliffs, NJ, 1994.

[Gup93] R. K. Gupta, "Co-Synthesis of
Hardware/Software for Digital Embedded Systems," PhD
Dissertation, Stanford University, 1993.

[Hen96] J. Henkel and R. Ernst. "The Interplay of Run-
Time Estimation and Granularity in HW/SW Partitioning,”
Fourth International Workshop on HardwarelSoftare
CoDesign, p.52.

[ISC85] Inter. Society on Circuits and Systems, 1985.

[Keu94] K. Keutzer, "Hardware-Software Co-Design and
ESDA," Proc. of 31st Design Automation Conference, pp.
435-436, 1994.

[Kim90] W. Kim, J. Banerjee, H.-T. Chou, and J.F. Garza,

"Object-oriented Database Support for CAD,” Computer
Aided Design, Vol. 22, No. 8, October 1990, pp. 469-479.

[Mar96] T. Marlowe, A. Stoyenko, P. Laplante, R. Daita,
C. Amaro, C. Nguyen, and S. Howelll, "Multiple-Goal
Objective Functions for Optimization of Task Assignment
in Complex Computer Systems,” Control Engineering
Practice, Vol. 4 No. 2, 1996, pp. 251-256.

[Mil95] R. Miller and H. Carter, "Hardware/Software
Partitioning in COMET," Proceedings of the COMET
Project Review Meeting, presentation slides, 1995.

[Nay91] TXK Nayak, AK Majumdar, A. Basu, and S.
Sarkar, "VLODS: A VLSI Object Oriented Database
System,"” Information Systems, Vol. 16, No. 1, 1991, pp.
73-96.

' [SDF95] Standard Delay Format Specification, Version
3.0, Open Verilog International, Los Gatos, CA 95032,
May 1995.

[She94] N. Sherwani, Algorithms for VLSI Physical
Design Automation, Kluwer Academic Publishers, Norwell,
Mass, Second Printing 1994.

[Sie89] E. Siepmann and G. Zimmermann, "Object-
Oriented Datamodel for the VLSI Design System
PLAYOUT," Proc. of the 26th ACMIIEEE Design
Automation Conference, Las Vegas, NV, 1989, pp. 814-
817.

[Vem94] R. Vemuri, H. Carter, and P. Alexander, "Board
and MCM Level Synthesis for Embedded Systems in the
COMET Cosynthesis Environment,” Proceedings of the
First Annual RASSP Conference, Arlington, VA, August
1994, pp. 124-133.

[Ven94] S. Venkatesan and K.C. Davis, "A Data Model
for VHDL Databases,” VHDL International Users Forum
Spring-94, Oakland, CA, May 1994, IEEE Computer
Society Press, pp. 173-182.

[Ven95] S. Venkatesan and K.C. Davis, "Odyssey: An
Electronic Design Automation D<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>